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ABSTRACT

Pure Library and Reflection Based Language
Extension Techniques for Object Oriented 

Systems

by 

Murat Karaorman

In order to cope with the increasing complexity and evolving requirements of 
ware, we need better languages and modeling tools which support higher and
suitable levels of abstraction. The original research work conducted as part o
dissertation introduced new language extensions for concurrency, distributed
puting and design by contract for the object oriented languages, Eiffel and Jav
demonstrated that powerful new abstractions can be introduced using a p
library based approach and a set of naming and programming conventions w
violating the object-oriented principles or compromising language or safety feat

We developed techniques to build extensible, open object-oriented libraries th
and take advantage of the existing low-level system and vendor libraries, platf
frameworks to support several new high-level abstractions. Programmers use
abstractions by following our naming and programming conventions. We illus
the applicability of our approach by building and presenting three original rese
application systems: Class CONCURRENCY, Active-RMI and jContractor. Class
CONCURRENCY introduces concurrency, active objects, asynchronous calls, d
driven synchronization and scheduling abstractions to Eiffel. Active-RMI introduces
asynchronous remote method invocation with future-type results; asynchro
result delivery; transparent remote-object creation; active-object semantics;
programmable scheduling and synchronization to Java. jContractor introduces
Design by Contract  constructs: preconditions, postconditions, class invaria
recovery and exception handling to Java through an intuitive naming convention
standard Java syntax.  jContractor uses reflection and dynamic class loading terc
niques to discover  contract specifications by examing Java class bytecode
synthesizes and loads an instrumented version of the Java class which incorp
code that enforces the runtime checking of contracts.
ix
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Chapter 1

Introduction

Designing a software system involves meeting the requirements of the proble
hand with a given set of software and hardware capabilities. The type of sof
design tools and abstractions available to the designer greatly influences the fe
ity, the amount of effort, and the quality of the solution. Operating systems and 
level programming languages and libraries provide the basic software abstra
available to the programmer. The fundamental software and hardware abstractio
not change nearly as fast as the pace at which hardware, memory and commun
becomes faster and cheaper. As hardware keeps getting cheaper and more po
computer applications continue to reach into larger, more complex and sophist
domains. 

In order to cope with the increasing complexity and evolving requirements of 
ware, there is always a need for better modeling tools and languages supporting
and more suitable levels of abstraction. This dissertation describes techniqu
introducing new fundamental abstractions to object-oriented languages without r
ing changes to the language or its development environment. Our approach in
designing class libraries and associated programming and naming conventions 
vide new abstraction capabilities to object-oriented programming languages. We
trate the applicability of this approach by building and presenting three orig
research application systems. We discuss in detail the design and implementa
class libraries, programming and naming conventions and reflection techniqu
introduce high-level language abstractions to Eiffel and Java for concurrency; 
chronous calls and data-driven synchronization; active objects; scheduling; distri
computing; remote object creation; and design by contract. 
1
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1.1 Statement of the Problem

Each high-level programming language provides a fixed set of abstractions tha
grammers use to design software systems and applications. These core progra
abstractions typically differ little from one general purpose language to another
generally offer a low-level, abstract view of a virtual machine. They include sup
for representing and naming data objects and structures; typing; procedural ab
tions: functions, function calls, name spaces, argument marshalling; syntactic ab
tions for writing arithmetic and logical expressions and programming flow con
Object oriented languages offer additional abstractions to support data hiding
encapsulation, inheritance, polymorphism, classes, interfaces. Increasing comp
of software systems demand enhanced productivity, efficiency, and ease of m
nance and continually require programming languages and environments to e
and offer better suited and higher level modeling capabilities.

The use of libraries is a well-known technique to extend a language with new fea
and functionality. In fact, most of the statically typed mainstream languages 
basic user-level operating system (O/S) services and abstractions such as s
files, file-systems, dynamic memory allocation, processes, threads, interprocess
munication, networking, etc., outside the language definition, and instead rely o
presence of externally linked system and run-time support libraries and standard
cation programming interfaces (APIs) to access them. For example, standar
libraries extend C language in such a way that most C programmers use and th
these calls (printf, scanf, etc.,) as if they were part of the C language definition.
uses a rich set of libraries (called packages) and APIs to support windowing ab
tions, event-modeling, imaging, etc.,

The library based extension approach is also quite common in interpreted or scr
languages. Examples of some of the popular and successful cases include Co
Lisp, Tcl, and Perl. Common Lisp extension CLOS provides object orientation 
port. Tcl has been extended to provide graphical and windowing support, Tc
object-orientation support, Incr-Tcl. Perl has been extended to provide sea
access to just about any operating system function. 

There are several advantages to the approach of employing libraries to suppo
abstractions and functionality: the core language remains more compact and 
and therefore easier to specify, implement and port to different architectures
libraries can be developed and maintained separately and efficiently and in most
the libraries can simply be implemented as an indirection layer above the nativ
services.
2
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The availability of extended functionality in the form of generic, system-level libra
is very useful, however, the challenges for building large and complex system
remain as long as the abstractions offered in the form of library APIs are low l
General systems and libraries typically offer a rich set of low level APIs to o
greater control and flexibility. This assigns more responsibility to a programm
keep track of state, consistency, and correct usage, and is therefore error pron
following is a list of some of the techniques that have emerged in practice to cope
evolving complexity of software when using low-level abstractions: 

• Layering or hierarchical decomposition of libraries and services, —networki
and communication services and protocols, event-handling, windowing syst

• Extending the O/S services to offer more and higher-level user-level APIs —
thread, synchronization, scheduling, communication, event-handling, IPC, 
graphics, …

• Supporting platform specific frameworks —MFC, COM, OLE/ActiveX, 
VxWorks/Tornado…

• Supporting platform independent frameworks —X, AWT/JFC/Swing, CORB
RMI,

• Providing automation toolkits, wizardry, and software engineering tools —ID
CASE Tools, Interface Builders, Beans, …

• Using Design Patterns [30].

While these techniques offer some help in dealing with complexity they typic
require steep learning curves and a fair amount of commitment to a platform ev
perform fairly simple or common tasks. Additionally these techniques and framew
typically do not provide an open or extensible architecture, often requiring going
of the box and reverting to a custom, more complex solution when there is a par
mismatch. 

Finding the right (high) level of programming abstractions is the greatest chall
with these techniques. The problem is in part due to the fact that the general tech
are too broad or horizontal, as they cater to as large domains of applications as
ble. Problems start cropping up in vertical, or specialized domains, such as hig
formance computing, real-time systems, scalable and collaborative systems
custom communication needs, etc. Another problem area is in the application do
of emerging technologies and research environments -- some current exampl
wireless communications, speech recognition, telephony, internet devices, mobi
ubiquitous computing.

The ideal way to support high-level abstractions to address a particular pro
3
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domain is to have direct language support. This approach can provide additional
and efficiency. Historically, the following approaches have been used:

1. Design a brand new language to address specific problems in targeted app
tion domains and platforms.

2. Extend an existing language with new and non-standard extensions using 
tomized compilers, preprocessors, or run-time environments.

Both of these approaches offer custom and dedicated solutions but this in itse
cause problems. It may be impossible or impractical for programmers to migrat
new language and/or development or runtime environment. Maintenance, relia
security and future support issues might also hinder acceptance. 

In this dissertation we describe techniques for providing an alternative approach

3. Extend an existing object-oriented language using a purely library based 
approach to provide a new set of high-level abstractions. 

1.2 Dissertation Research Overview

The key research work conducted as part of this dissertation consists of introd
new language extensions by designing class libraries for concurrency, distri
computing and design by contract for the object oriented languages, Eiffel and
We demonstrate that powerful new abstraction capabilities can be introduced w
violating the object-oriented principles or compromising other language or safety
tures, while using a purely library based approach and a set of naming and pro
ming conventions.

We developed techniques to build extensible, open object-oriented libraries th
and take advantage of the existing lower-level system and vendor libraries, platf
frameworks to support several new high-level abstractions. We present the desig
implementation details of the research prototype systems we have developed to
duce the following high-level programming abstractions:

• Concurrency.

• Active objects.

• Asynchronous calls.

• Data driven synchronization.
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• Scheduling.

• Active remote objects.

• Remote object creation.

• Design by Contract.

Eiffel is an object oriented language which has built in support for design by contract,
but does not have concurrency features. We have designed and implemented a
class library, Class CONCURRENCY, which provides concurrency, active object
asynchronous calls, data-driven synchronization and scheduling abstractions to
objects as encapsulated and inheritable properties. Objects which inherit from Class
CONCURRENCY can acquire a separate thread and state and become active 
programmable scheduler. Active objects’ methods can be called asynchronousl
a deep-copy pass-by-value semantics for normal object arguments and referenc
ing semantics for active object arguments. We discuss the concurrency abstra
and design issues in Chapter 2, and present the implementation details of theClass
CONCURRENCY in Chapter 3.

Java has a basic low-level thread abstraction to support concurrency and has 
method invocation (RMI) to support distributed remote objects. We have designe
implemented the Active-RMI system which introduces active objects, asynchron
calls, data driven synchronization, scheduling and remote object creation to Jav
have also designed and implemented a reflective Java library, jContractor to introduce
Design by Contract. We discuss the remote active object and design by con
abstractions and design issues in Chapter 2, and present the implementation w
Active-RMI libraries in Chapter 4, jContractor libraries in Chapter 5.

Table 1.1 gives a brief summary of the abstractions we have introduced to Eiffe
Java. We discuss the key abstractions and design issues in Chapter 2. We pre
design and implementation details of the Class CONCURRENCY, Active-RMI and
jContractor in chapters 3,4 and 5 respectively. jActivator system has not been imple
mented and is briefly discussed in the future work section of the Conclusion.
5
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1.3 Summary of Research Contributions

Our primary contribution is to have shown by way of designing and implemen
how class libraries and associated programming and naming conventions can b
to introduce new abstractions to object-oriented languages. 

Significant contributions to modeling active objects, concurrency and distrib
object computing were made through the design and implementation of Class 
CURRENCY and Active-RMI systems. 

ABSTRACTIONS
Class 

Concurrency 
(Eiffel)

Active-RMI 
(Java)

jContractor 
(Java)

jActivator 
(Java)

Concurrency N N N

Active Local Objects X

Asynchronous Calls X X X

Data Driven 
Synchronization

X X X

Scheduling X X X

Distributed Computing N N N

Active Remote Objects X X X

Remote Object Creation X X X

Design by Contract N

Pre Conditions, Post Con-
ditions, Class Invariants

X

Special syntax (old, 
result)

X

Exception Handling X

Legend: X = Newly added feature; N = Native language feature

Table 1.1: Overview of Dissertation Research.
6



g and
w

men-

um-
We have also introduced design by contract abstractions to Java by designin
implementing the jContractor system. This work also allowed us to introduce ne
techniques using reflection and dynamic class loading to perform runtime instru
tation.

Some more specific contributions are listed in the Conclusion, in the section “S
mary of Key Contributions” .
7
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Chapter 2

Introducing New Features to
Languages using Library Extensions

In this chapter we discuss design issues and techniques for introducing new fund
tal abstractions to object-oriented languages without requiring changes to the lan
or its development environment, and without violating the object-oriented princ
or compromising other language or safety features. Our approach is based on d
ing extensible, open, object-oriented libraries that work with our naming and prog
ming conventions and utilize existing lower-level system abstractions, libraries
frameworks. This chapter is organized into three sections discussing our approa
design issues while introducing three fundamental sets of abstractions: concurrency,
distributed active objects, and Design by Contract. As part of this dissertation work
we have built three systems: Class CONCURRENCY to introduce concurrency, active
objects, asynchronous calls, data-driven synchronization and scheduling abstra
to Eiffel; Active-RMI to introduce asynchronous remote method invocation w
future-type results; asynchronous result delivery; transparent remote-object cre
active-object semantics; user programmable scheduling and synchronization to
jContractor to introduce Design by Contract to Java. The design and implement
details of the Class CONCURRENCY, Active-RMI and jContractor are individually
presented respectively in Chapters 3,4 and 5.

2.1    Introducing Concurrency to Object Oriented Systems

Object-oriented paradigm appears to be well-suited for concurrent programm
Objects can be used to implement not only data-structures but also processes 
9
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objects with a protected internal state and a prescribed behavior. The extended v
objects as processes having a protected private state and a prescribed behav
vides the bridge to parallelism, since most approaches in parallel programmin
based on the notion of process. Also the communication/synchronization aspe
concurrent programming blends well with the basic message passing (or method
cation) model of computation in object oriented programming. Our approach to i
ducing concurrency is through supporting the active object and asynchronous remote
method invocation with data-driven synchronization abstractions. 

There are numerous design considerations that need to be addressed in dete
which concurrency abstractions to support and how to integrate them with the o
model. In Section 2.1.1 we present these issues. Our main concern is that the i
tion of concurrency and object-oriented programming should not result in the sac
of the advantages of either or both worlds. Concurrency abstractions should b
ported as natural extensions to the object model that does not violate the princip
object-oriented programming — such as reusability, data encapsulation, data a
tion, inheritance, polymorphism. Designing a concurrency class library along wi
object-oriented concurrent program design method and tools to extend an existin
object-oriented language has several advantages, and this alternative should be
ered before any other scheme which involves making modifications to the sy
semantics or runtime aspects of the language. 

In the Section 2.1.1 we present some of the design issues and approaches t
designing concurrent object oriented languages. In Section 2.1.6 we present the 
tages of choosing a library based approach for introducing concurrency to Eiff
full description of our concurrency mechanism, and an associated concurrent pro
ming design method describing how a concurrent application can be designed
sequential object specifications, and how this process can be automated, alon
some examples is discussed in Chapter 3, “Introducing Concurrency to a Sequ
Object-Oriented Language” on page 41 and in [41]. 

2.1.1    Design Issues for Concurrency Abstractions

The central abstraction for concurrency in most parallel programming systems 
notion of process or thread of control, which represents a virtual processor execut
instructions within a context. Concurrency implies the possibility of multiple thre
executing in parallel as parts of the same computation. The notion of a single thr
control already exists (implicitly) in the sequential object-oriented programming
single thread starts executing instructions within the context of a ’root’ object,
each method call (return) of an object’s method transfer the thread of control to (
10
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the called object. At any given point in time a single thread of control appears 
executing the instructions within the context of some object one of whose method
most recently been invoked. 

Following is a list of design issues pertaining to the thread abstraction: 

• Is the notion of active objects supported? Otherwise how is an independent (p
allel) activity (thread) represented by the object model? 

• If the active object notion is supported, how can an object become active? 

• Are multiple threads of execution allowed inside an object’s methods? 

• What is the granularity of concurrent access to an object? 

• What mechanism is used to ensure mutual exclusion in the presence of multiple 
threads? 

Following is a list of issues that are related to the coordination of parallel activities: 

• How are concurrent threads or activities synchronized? 

• How do concurrent threads or activities communicate? 

• If communication is based on message passing: 
Is message acceptance or message sending explicit? 
Is message delivery synchronous or asynchronous? 

• What type of scheduling policies are supported? 

Following is a list of issues related to the language model and distribution: 

• Do all objects reside in the same address space? 
This issue greatly affects other parts of the design. In particular, message pa
and synchronization mechanisms greatly depend on the presence (or absen
a shared memory assumption. Thread abstractions will also be closely relat
the address space assumption. 

• If objects can reside at distributed sites, how are object references passed a
parameters? Do they need to deep-copied? Migrated? 

• Can all communication be statically type-checked? 

• Do special libraries exist for extending or refining the concurrency abstraction

• Which language is used to express sequential constructs? 

• What type of abstractions or concurrency mechanisms are assumed (or exp
11
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to be provided by the underlying operating system. 

The answers to these questions have a profound affect on the type and amount 
currency that is attained by the model. Nearly any combination of these key d
choices exist in the literature. 

We have introduced concurrency to the sequential object-oriented language, 
with no language extensions or modifications to the compiler by providing sp
concurrency classes. Table 2.1, “Overview of Introduced Concurrency Abstracti
on page 13 lists the main abstractions and features of our Eiffel concurrency e
sions. 

A summary of our design decisions for introducing a concurrency model for Eiffel
lowing the guidelines we have discussed earlier in this section is as follows:

• The concurrency approach is based on active objects. 

• Only those objects which inherit from Class CONCURRENCY can become 
active. 

• Objects can become active by acquiring an independent thread of control when 
the split  method is invoked. The split  method is inherited from the Class 
CONCURRENCY (Library).

• Active objects communicate by asynchronous remote invocation of their meth-
ods. 

• Synchronization is data-driven based on future type result objects. 

• Message acceptance is explicit, achieved by providing a special scheduler routine 
for each active object. 

• Each active object supports a single thread of activity. 

• All active objects reside at disjoint address spaces, and therefore

• All object references must be deep-copied.
12
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CONCURRENCY ABSTRACTIONS

Active Object Instantiation & References

Feature Description

Class CONCURRENCY Must be inherited for an object to become active.

Create Instantiates the proxy of an active object.

split
Creates active object in separate address space & set
up connection with the proxy.

attach Connects the proxy with an existing active object.

Asynchronous Call

Feature Description

REQUEST Class
Encapsulates data and communication parameters of 
an asynchronous call, associated with a unique call-id.

remoteInvoke

The proxy takes method name and call parameters, 
creates a REQUEST object and asynchronously deliv-
ers it to the attached active object’s request queue.
Returns unique call-id associated with future result of 
the call.

Synchronization & Reply Scheduling (Proxy side)

Feature Description

claimResult
Blocks until result is received for the call associated 
with the given call-id. 
Returns the result of the computation.

resultAvailable
Polls the proxy’s result queue. Non-blocking.
Returns true if result is ready for given call-id.

data

Applies to a FUTURE object. Blocks until result is 
received for the call associated with the given 
FUTURE object. 
Returns the result of the computation.

isReady
Applies to a FUTURE object.
Polls the proxy’s result queue. Non-blocking.
Returns true if result is ready.

Table 2.1: Overview of Introduced Concurrency Abstractions
13
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Our choices in addressing the design issues are largely guided by our desire to
duce concurrency to Eiffel using class libraries, and coming up with a concurr
mechanism that respects object-oriented design principles. Subsequent sectio
vide more discussions about the key elements of our design. A detailed descrip
the Class CONCURRENCY, examples, and an automated design method for conv
ing sequential classes to concurrent classes is presented in Section Chapter 3.

2.1.2    Active Objects

Our view of concurrency is based on the notion of process and its integration with the
notion of object. This unification of the notion of a process and object results in
concept of an active object. Objects can become active only if they inherit from t
Class CONCURRENCY. Concurrency can then be viewed as the parallel execu
resulting from the creation of these active objects and their interactions with 
other. 

Request Scheduling (Server side)

Feature Description

requestQueue
Server’s queue of incoming REQUEST objects asyn-
chronously sent by proxies.

scheduler

User defined routine defines the behavior of the active 
object typically by scheduling incoming requests. 
Scheduling logic can utilize the name and signature of 
the operation & the runtime values of the arguments. 

getRequest
Blocks scheduler code until arrival of new request(s) 
or a specified time-out.

pendingRequestExists
Polls request queue about new request(s) without 
blocking.

sendResult
Asynchronously sends the result of the current request
to the responsible proxy.

CONCURRENCY ABSTRACTIONS

Table 2.1: Overview of Introduced Concurrency Abstractions
14
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Figure 2.1: . Process State after Create

The Class CONCURRENCY preserves the instance creation semantics of seque
Eiffel objects. The Create method instantiates a sequential proxy object. The actual
creation of an active object with its own process (or thread) is achieved by invoking
this proxy object’s split  method. This method starts a new process with an inde
dent thread of control and returns back to the client after the active object is created
and communication ports are established and initialized. Then the active object b
executing a special start-up method, scheduler . The methodology requires that th
scheduler  method is defined for each class that inherits from CONCURRENCY.
This method specifies how to serve the requests generated by clients using the
remoteInvoke  method. All requests are delivered as actual messages to the s
using a transparent inter-process communication (IPC) mechanism. Since multip
ents can simultaneously request services, the communication is buffered.

For figures 2.1 and 2.2, assume that obj  inherits from CONCURRENCY. Figure 2.1
depicts the situation after the creation of the obj’s proxy by executing the following
statement in one of client’s methods: 

obj . Create; 

Figure 2.2 depicts the situation after the following statement in one of client’s methods
at a later point in the execution: 

obj . split; 

oobbjj ::

CCll iieenntt
PPrrooxxyy  ((oobbjj))

ccrreeaattee
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Figure 2.2: Process State after split

In both figures, the dotted boxes represent processes residing in distinct a
spaces. Solid arrows are the object references pointing to the circles which rep
the actual objects. The dotted line arrows inside an object in each process repr
thread executing a method of the object. The dotted line arrows between obje
represented as circles — correspond to the method call and value return betwee
objects. Finally the striped bi-directional arrow between two objects in separate
cesses represent the link between the dedicated communication ports of theproxy
server object, and the corresponding active server object. After a split , the server
object in the client’s process act as a proxy to the actual active server object. Th
proxy object transparently and asynchronously relays the requests to the 
server’s request queue, and returns the results of requests which are asynchrono
delivered to its result queue by the server. 

Once a server object has been made active, via a split  operation, new clients tha
want to invoke the server’s methods must create their own proxy copies, and u
attach  method to set up the association between the proxy and the active s
object. A reference to the communication port of the active object must be
obtained from an ’informed’ client, as an argument. Calling attach  is significantly
cheaper than split , since it doesn’t involve creation of a new address space. U
attach  is the only mechanism to share active objects. 

2.1.3    Asynchronous Calls and Synchronization

In the sequential object oriented paradigm, method invocation is a synchronous proce-
dure call, and objects are passive entities, doing work only when their methods a
invoked. We call the object invoking the method a client, and the invoked object a
server. 

oobbjj ::

CCll iieenntt
PPrrooxxyy  ((oobbjj))

ssppll ii tt

AAcctt iivvee  OObbjjeecctt   ((oobbjj))

�������������������������������
�������������������������������
�������������������������������
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The Class CONCURRENCY implements a non-blocking, asynchronous method invo-
cation mechanism called remoteInvoke . Consider the following code where obj  is
an active object, 

callID: INTEGER; 

returnVal:T;

callID:=obj.remoteInvoke(“method”, arg_list);

.

. Concurrent execution with obj

.

-- use callID to obtain the associated result

returnVal ?= obj.claimResult(callID);

The client thread in this example does not wait for the completion of obj’s  execution
of method , but rather concurrently continues executing its own code until the poi
its own execution where it actually needs the result of the execution of method . The
part of the client’s code shown with dots above is executed in parallel with the obj’s
code. The result returned by claimResult  conforms to all types, so it is reverse
assigned to the correct type of returnVal,  using the ?= reverse-assignment attemp
operator. The type, T, of returnVal  is the actual type returned by obj’s  method fea-
ture. This is a data-driven synchronization scheme, based on asynchronous m
passing, and is referred to as the wait-by-necessity by Caromel [18] . 

The Class CONCURRENCY provides two methods to access the result of a remote-
Invoke . Both of the methods take a single argument, a callID , which is returned by
the corresponding remote invocation. The method, claimResult , as used in the
example of the preceding paragraph, returns the result delivered by the server
result is not available yet, then claimResult  blocks until it becomes available. The
other method, resultReady , is a non-blocking test for the availability of result of the
remote invocation associated with the callID . All the underlying communication is
encapsulated and hidden from the application. The callIDs  returned by remoteIn-
voke are similar to the ConcurrentSmalltalk’s CBoxes [72] and ABCL/1’s future type
messages [73]. 

Since active objects resides in separate and address spaces, objects that ap
parameters of remote methods of active objects can not be passed by referen
must be (deep) copied. 
17
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2.1.4    Future Type Results and Higher Level Abstractions

The remoteInvoke  method is a low-level abstraction and has the following dis
vantages:

• The method-name argument needs be to passed as a string making standard 
type-checking not possible; 

• The method cannot take variable number of arguments, requiring the actual
ments to be stored in a variable-sized array.

The lack of support for reflection, runtime instrumentation or dynamic loading of c
binaries in Eiffel limited our abilities to provide a higher level abstraction that ca
supported directly by the standard language environment. However, in the se
“Generation of Concurrent Class Prototypes from a Sequential Class” on page 5 we
describe a design method which provides static-type checking, and variable-size
ment passing capabilities for remote invocations which results in a simpler, safe
more transparent utilization of the remoteInvoke  method. 

This design method outlines a method to transparently call remoteInvoke  using the
same typesafe syntax of a sequential call as shown in the following code exa
where active_obj , is an active object designed by applying our design meth
Using future type results provides simpler and more way to transparent access 
invocation results. Explicit invocation of claimResult  and resultAvailable  is
also eliminated by the utilization of the FUTURE type. The FUTURE type objects
returned by the proxy object are similar to the Concurrent Smalltalk’s C Boxes
and ABCL/1’s future type messages [73].

future: FUTURE; 

returnVal : T;

future:=active_obj.method(arg1, arg2...);

.

. concurrent execution with obj

.

returnVal?=future.data;

--implicit claimResult from active_obj
18
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2.1.5    Scheduling

Two types of scheduling are supported by our concurrency mechanism: reply schedul-
ing and request scheduling. Reply scheduling is the control the client has over th
delivery of the reply and request scheduling is the control the active object server h
over the acceptance and service of the requests [58]. Reply scheduling is addressed by
the remoteInvoke , claimResult  and resultReady methods as presented in th
previous section. This section describes the request scheduling methods: getRe-
quest , pendingRequest , sendResult , and the scheduler . 

One of the requirements of the methodology for designing active objects is to define a
start-up method, called scheduler . The split  call transfers control to the sched-
uler  method of the target active object. The scheduler  has exclusive access to th
concurrency related internal state of the active object, and specifies the behavior
active object. 

Message acceptance is asynchronous and explicit. Accepting a message is separate
from actually serving the request. Thus the model provides a powerful mechanism
dealing with local delays, which is deemed essential in Liskov et al.’s [46] formulati
of concurrency requirements for developing client/server type distributed program

A queue of request messages, called request_queue  is created for each active objec
to store all accepted requests from client objects. Messages delivered to the com
cation buffer, but not yet accepted into the request_queue  are called pending
requests. Each entry in the queue contains all of the parameters of the client’s r
invocation request, including its callID  and reply address. The server object expl
itly needs to show intent to accept messages: getRequest  is a potentially blocking
call that commits all pending requests into the request_queue , and blocks if no
pending request exists until the first one arrives. The non-blocking variant of this
method is the pendingRequest  method. 

The scheduler  has unrestricted access to the request_queue , and it can inspect
the parameters and names of the requests in the queue in order to select and se
of them. It can also choose to wait for a certain type of request to arrive, or a c
condition before it selects a request for service. Sending a result back to a clien
the service of a request is also done asynchronously and explicitly, using the sen-
dResult  primitive.  

Since there is a single execution thread inside each scheduler , the execution of all
incoming requests are serialized. This also applies to the passive objects within
process, since no sharing of passive objects is possible due to the deep copy se
19
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of arguments of remoteInvoke  method. Therefore all requests to the methods o
passive object are also serialized. This eliminates the need for synchronization 
the methods of objects and allows us to have all synchronization points corresp
communication events. 

2.1.6    On Designing Libraries to Introduce Concurrency

Some of the advantages of designing class libraries to introduce concurrenc
sequential object-oriented language are listed below

• Libraries provide a more flexible and extensible solution for concurrency since 
they can be tailored to the specific needs and characteristics of the target op
ing system and hardware by modifications or refinement of the libraries. Con
rency abstractions that are hard-wired into the language may be impractical
impossible to change. A similar analogy exists in the operating system rese
It is more desirable to implement smaller (micro) kernels that move a lot of t
traditional kernel abstractions and services out of the kernel (and implemen
application-level processes) in favor of reduced complexity and size and 
enhanced flexibility — even though it might have been more efficient to prov
these services within a larger, monolithic kernel. 

• It is important that reuse of sequential libraries can be supported after concur-
rency is introduced. Radical changes to the language and the object model 
render existing sequential code obsolete. Whereas, extensions through libra
will support the design of sequential objects in much the same way it was be
concurrency is introduced. Hence reusability is improved since existing sequen
tial code can be incorporated into a concurrent application easily. 

• It is more practical and easier to design and maintain a concurrency library tha
inventing a new concurrent object-oriented language, or modifying an existi
language and its compiler (even when there are compilers available for modif
tions). 

• By using a strictly object-oriented technique — designing reusable class libr
— to introduce concurrency and keeping the original language in tact, the princi-
ples of object-oriented programming and design are respected. Adding concur-
rency through modifying the language may add a great deal of complexity and 
restrictions to its future evolution. It might even be impossible or difficult to p
the language to new hardware or operating system platforms with the added
currency specifications. Libraries offer a modular and robust mechanism for
porting constantly evolving hardware and O/S platforms. 
20
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• Object-oriented libraries support user level extensions. 

• Object-oriented libraries can support systematic layered views allowing diffe
levels of abstractions to be delivered to different types of users. While the ca
user can use the high-level abstractions of concurrency, more sophisticated
can use (and reuse) the entire library, with all of its lower-level abstractions (suc
as IPC, O/S interaction, etc.,.) and extend or design new higher-level abstra
tions. 

• Designing libraries for concurrency can help designer from fully committing t
specific style of concurrency. September 1993 issue of the Communications
the ACM contains 4 different proposals for introducing concurrency to Eiffel 
guage [19], [41], [48], [55], all with quite distinct approaches. 

• Users are less likely to switch to a non-standard language extension that is c
tomized for concurrent programming especially if switching would require al
switching (or abandoning) tools and existing libraries, whereas library based
extensions can be easily incorporated to the user’s programming environme

• Library based approaches can be quite efficient since all concurrency and syn-
chronization abstractions must eventually be derived from or mapped onto u
lying platform dependent operating system resources and services. 

Some issues are harder to deal with when designing libraries. Static type-check
objects is a problem for communication. Details of having to explicitly initialize or
up communication and provide stub generation, etc. may seem as the disadvant
the library approach. Along with our library based extension, we provide the prog
mer with a design method that prescribes how to automatically extend sequ
classes to concurrent ones, generate proxies and type-safe stubs for commun
and synchronization (for details see Chapter 3: “Introducing Concurrency to a Se
tial Object-Oriented Language” on page 41) Buhr et.al.[15] mention some prob
with library design for introducing concurrency, but their arguments are mostly 
taining to the context of the concurrency mechanism they adopted for µC++ [1
C++ extension. 

2.2    Distributed Object Abstractions

In section 2.1 we have presented the Class CONCURRENCY, a library based approach
to introduce concurrency to a sequential language, Eiffel. In this section, we disc
similar technique to introduce new distributed computing abstractions to Java
Active Remote Method Invocation system (Active-RMI).
21
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2.2.1    Background: Distributed Object Computing

Development and acceptance of open communication standards and protocol
made it feasible and a practically possible to interconnect the tremendously d
heterogeneous computers and operating systems under a unified framework, the
net. Open standards and widely accepted protocols such as low-level TCP/IP, U
[68] or higher level protocols such as HTTP, FTP, RPC[9], etc., make it relatively 
to develop networking and communication oriented software in which the empha
either on exchange or streaming of well-structured data/messages, or requ
remote services with well-known interfaces. Such programs are typically tediou
require a programmer to parse and map the message stream to the application 
tics explicitly, usually in a platform and language specific fashion. This appro
works well for such tasks as basic information retrieval, web-browsing, chatting.

Distributed computing is a more encompassing form of programming which uses 
working and communication to enhance a local computation by potentially distr
ing   portions of the computation among different hosts; or to collaborate with o
executing programs towards accomplishing a global task. What makes distribute
gramming challenging is the semantic gap between programming language sem
involving local and remote computations and the communication abstractions. Di
uted programs require higher levels of abstractions then TCP/IP or other basi
working protocols. Certain standards and tools have been emerging recently tha
programmers write language independent “abstract” interface specifications tha
be implemented separately, potentially in different languages through different
guage bindings. The separation of interface from implementation reduces grea
complexity the programming of the communication and inter-operability requirem
especially in a heterogeneous environment, but the semantic gap between loc
remote computation still needs to be explicitly solved by the programmer. S
examples of well-adopted tools and standards for distributing programming are: 
level mechanisms such as RPC[9] DCE[59] or object-based distribution prot
such as CORBA[60], RMI[70], ILU[35], HORB[67] or DCOM[10]. All of these sys
tems add a distribution layer on top of a general purpose programming languag
tem: an intermediate interface definition language (IDL) and an IDL-to-application
language tool is provided to support creation of remote stubs/proxies, and for reg
ing or locating remote interface implementation objects/servers. Other less popu
experimental solutions exist as research prototypes of distributed operating sy
such as Sprite[27], Inferno[49] that support a distributed scope and access prim
as operating system functions; or languages specifically designed for distributed 
cations such as Emerald[36], Telescript[69], Agent-Tcl[32].
22
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2.2.2    Design Issues and Active-RMI Approach

The Active Remote Method Invocation system (Active-RMI) is a set of class libraries
tools, and a design method which provides high-level abstractions for building di
uted Java applications based on the notion of active remote objects. Active-RMI is a
natural extension of our work involving introducing concurrency extensions to E
language using class libraries[41]. Active-RMI is implemented as an extension to th
Java RMI system which was integrated by Sun Microsystems into the Java 
guage[31] with the release of JDK 1.1. The key contributions of Active-RMI system to
distributed computing is the extension of Java-RMI with the following features, which
are explained in greater detail in Chapter 4: “Active-RMI: Asynchronous Rem
Method Invocation System for Distributed Computing and Active Objects” .

1. Asynchronous remote method invocation with future-type results 
2. Asynchronous result delivery from the server to the caller.
3. Remote-object creation by the client via transparent class exporting/upload
4. Active-object semantics for remote objects created using Active-RMI protocol.
5. User programmed scheduling and synchronization of remote method invoc

tions.

Table 2.2, “Overview of Introduced Distributed Computing Abstractions.,” on pag
provides a general outline of our approach. Using Active-RMI one can write complete
class specifications in Java describing remote active-object interfaces and implem
tions, designate remote hosts (or brokers), and remotely create or discover new 
objects on the participating remote hosts. Upon creation or discovery of an a
remote-object, an Active-RMI program can reference and synchronously or asynch
nously remote invoke its public methods using the same syntax as if it were a
Java object. Remote hosts need to be active and willing participants in the Active-RMI
protocol, but they do not need to have a-priori knowledge of the types of active ob
that they will host, as Active-RMI protocol transparently exports the needed class d
nitions in a demand-based fashion. Remotely created objects are started as a
mous agent-like objects, with a thread executing a designated method of the o
which can also access a private request queue of incoming Active-RMI requests from
clients. 

2.2.3    Active Remote Objects

We use the term active object to describe an object which has an independent thre
has access to a dedicated request queue of incoming method invocation reques
23
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Active-RMI system extends the Java object model by giving active objects auton
over how and when to respond to their clients’ requests. Each active objects is c
with its dedicated server scheduler thread, and an Active-RMI request queue. An
Active-RMI server utility creates each active object with its request queue and a dedi-
cated thread and then returns a remote-stub reference to the client which reques
active remote object’s creation. Clients access the remote Active-RMI object using a
Java RMI compatible remote object reference. The active object’s thread begins
cution in its scheduler  method. 

DISTRIBUTED COMPUTING ABSTRACTIONS

Remote Server location and remote object creation

Feature Description

aRmiServer interface
Allows a client to lookup or transparently 
create active objects on the remote server.

createRemoteObject method
Allows a client to lookup or transparently 
create active objects on the remote server.

Active Remote Objects & Dynamic Class Exporting

Feature Description

UnicastActiveRemoteObject 
class

Used to create active remote objects.
Uses RMI remote reference layer, com-
munication subsystem, provides a request 
queue & default (FIFO) scheduler
.

ClassExporter interface & 
implementation class

Used transparently by the createRemo-
teObject method for exporting referenced 
classes to the remote server.

Table 2.2: Overview of Introduced Distributed Computing Abstractions.
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Asynchronous method invocation and synchronization

Feature Description

_Stub classes

Used transparently by clients to make 
asychronous remote method calls.
The stub object creates and forwards a 
request object for each call and returns a 
call id without waiting for result.

aRmi_Request

Encapsulates an active-RMI call. Con-
tains unique call-id, method identifiers 
and serialized call arguments.

CallHandle class

A unique call-handle is transparently cre-
ated and placed in call registry for each 
asynchronous call.

getResult method
Blocking method of the call-handle 
object to return the call result.

resultReady method
Non-blocking method of the call-handle 
object to check call result availability.

Active-RMI Server, naming and registry services

Feature Description

aRmiServer interface & imple-
mentation class

Standalone server application object pro-
viding remote active object creation, 
naming and registry services.

aRmiSecurityManager class
Default security manager allowing 
dynamic class loading & thread groups.

aRmiClassLoader class
Required class loader for importing 
active remote object classes.

DISTRIBUTED COMPUTING ABSTRACTIONS

Table 2.2: Overview of Introduced Distributed Computing Abstractions.
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Active Remote Object instantiation.

Feature Description

_Skeleton classes

The implementation class corresponding 
to each active object that gets created on 
the server with a private request queue 
and scheduler.

aRmi_RequestQueue
Private, dynamically updated queue of 
incoming Active-RMI Requests.

scheduler method

The designated method of each active 
remote object where execution starts 
upon creation.
User programmable method defines the 
behavior of the active object.

Request scheduling, dispatching and synchronization.

Feature Description

waitForRequest method
Request Queue method which blocks 
scheduler thread until arrival of new 
request or time-out.

getFirstRequest, 
getLastRequest methods

Request Queue method returning first 
(last) request object in request queue with 
matching criteria. Request gets dequeued.

peekFirstRequest, 
peekLastRequest methods

Request Queue method returning first 
(last) request object in request queue with 
matching criteria. Request queue is not 
altered.

getMethodSignature method
Request object method returning String 
containing requested method’s signature.

args
Array component of Request object con-
taining array of serialized objects corre-
sponding to actual call arguments.

serve method

Request object method that dispatches the
request.
Dispatch implicitly sends result back to 
caller.

DISTRIBUTED COMPUTING ABSTRACTIONS

Table 2.2: Overview of Introduced Distributed Computing Abstractions.
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2.2.4    Asynchronous Remote Calls and Call Handles

All calls to Active-RMI objects are asynchronous. A client object initiates a remote
by transparently invoking the corresponding stub method. The stub method cre
request object for the remote call, marshalling the method descriptor, serialized
ments and a unique call identifier. The stub registers the request object with a
level client-side call registry and asynchronously sends the request object to 
remote server. Stub method returns the call identifier without waiting for the r
back from the remote server. 

The client obtains a call handle associated with the Active-RMI request by looking up
the call registry entry using the call identifer returned by the stub method. Clien
access the result of the remote method’s execution only using the call-handle a
interface functions:

• getResult :  for blocking receive 

• resultReady : for non-blocking querying

2.2.5    User Programmable Scheduling and Synchronization

In Active-RMI active object model, each request to the active remote object is d
ered as an aRmi_Request  message object into the target object’s private requ
pool, RequestQueue . There are no service guarantees, or an implicit order in wh
the arriving messages will be served. Each active object is created with its p
RequestQueue , and uses the thread executing its scheduler  to decide how to pro-
cess requests placed into the queue. The scheduler  method, however, is not
restricted to performing only scheduling activities. It can perform general pur
computations and engage in an agent-like behavior. The active object’s schedulin
thread accesses the RequestQueue  directly and peek into the queue o
aRmi_Requests , and implement a selection policy to choose and serve one o
requests in the queue. The scheduling policy can involve inspecting each req
type, or its method signature, or the values of its actual arguments. The sch
thread may also decide not to serve any of the current requests in the queue; 
wait until a certain event takes place, or a certain request arrives. A simple 
scheduler  code, enforcing a last-in-first-out style servicing of its request queu
shown below in Figure 2.3.
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 private void Scheduler()

throws java.rmi.RemoteException,Exception

 {

    while(true) {

while (!RequestQueue.empty()) {

 aRmi_Request currentRequest =

  RequestQueue.getLastRequest();

  currentRequest.serve();

 }

RequestQueue.waitForRequest(); // blocking call

}

}

Figure 2.3: A LIFO Scheduler Implementation

2.2.6    Remote Active Object Creation

A special Active-RMI server process, implementing the aRmiServer  interface needs
to be running on a server host in order for a client application to be able to remot
ate active-RMI objects on that host. A new active remote object can be created 
remote host via createRemoteObject  method which returns a remote stub refe
ence to the newly created active object. Without the Active-RMI server process run-
ning, a local object can still create active objects on its own host and export th
clients possibly residing on different hosts, but clients on remote machines will n
able to directly connect to this host and create active remote objects on it. The Active-
RMI server process is registered using standard RMI registry mechanism using the
name “aRmiServer". Client applications can locate and obtain remote object re
ences to the server using the standard java.rmi.Naming  utility:

aRmiServer rHost = (aRmiServer)java.rmi.Naming.lookup(

"//hostName/aRmiServer");

Active-RMI class libraries provide an implementation class, ARrmiServer_Impl,
which implements the aRrmiServer  interface. This class can be used to instanti
an Active-RMI server object as part of an application. Alternatively, a command-
utility, aRrmiServer,  is provided and can be started independently at each 
offering the Active-RMI remote object creation service.
28
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The primary function of the Active-RMI server object implementing the aRmiServer
interface is to facilitate remote object creation. It provides the createRemoteObject

method, used by clients to spawn new active remote objects on the host serv
returns an ActiveRemote  object reference, a subtype of java.rmi.Remote . The
returned reference acts as a proxy to the actual remote object: client’s invocation
proxy’s methods are handled as asynchronous Active-RMI requests, executed on th
remote host. 

Two variants of createRemoteObject are defined. Both can be invoked with a si
gle string argument, which   contains the implementation class path of the a
remote object implementation: 

• createRemoteObject( String  className)

• createRemoteObject( String  className, ClassExporter  ce)

The latter form is typically used transparently by the stub implementation of
Active-RMI Server object. If the server cannot find some of the classes locally
throws an exception forcing the client’s stub to pass a ClassExporter  object. When
the client responds by passing a class exporter object, a new class loader, aRmi-
ClassLoader,  is created and installed transparently by the server utilizing 
remote class exporter object received from the client to download required clien
classes and create the active object on the server. In order to facilitate the ne
installing a new class loader as required by Active-RMI remote object creation proto
col, the aRmiServer  process uses Active-RMI’s security manager, aRmiSecurity-
Manager , which allows   installing new class loaders. Finally, the aRmiServer
process handling the createRemoteObject  request creates the active obje
requested by the client, exports it using the RMI remote reference layer and ret
stub reference to the client. For more details see section “Remote Object Creatio
Distribution” on page 66.

2.2.7    Request Scheduling and Server Synchronization

Each request to an active objects gets queued in its RequestQueue  as an
aRmi_Request  object which represents the client’s remote method invocation in
form of a message containing the type and signature of the method and the ser
arguments list, args , in the form of an Object  array. While executing inside the
scheduler method, the active object can examine its RequestQueue  by peeking
into the request objects. The scheduler thread can make selection decisions ba
the signature of the requested method, or the contents of its actual paramete
request gets served by invoking the its serve  method:
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thisRequest.serve(); 

which executes the target method of the current active object with the actual 
ments, and then asynchronously sends the request back to the client whic
invoked the remote method. 

The RequestQueue  supports the standard java.util.Enumeration  interface to
allow iterations over its elements as well as providing several convenience funct

getFirst();

getFirst(String signature);

getLast();

peekFirst() & peekLast()

Further synchronization methods provide waiting behavior which block until a pa
ular request type arrives into the RequestQueue :

waitForRequest();  // any request

waitForRequest(String signature);// request w/matching sig.

Each Active-RMI request object is associated with a thread which has been susp
just before it began to execute the target method with the passed arguments. 
decision is made to serve the request, the thread can be resumed by:

More design and implementation details of the Active-RMI system are discuss
Chapter 4, “Active-RMI: Asynchronous Remote Method Invocation System for 
tributed Computing and Active Objects” on page 61.

2.3    Design by Contract Abstractions 

In sections 2.1 and 2.2 we have presented respectively two library based ext
techniques: the Class CONCURRENCY, to introduce concurrency to a sequential la
guage, Eiffel, and Active-RMI to introduce new distributed computing abstractions
Java. In this section we introduce our third research system, jContractor, a purely
library-based system which introduces Design by Contract abstractions to Java
jContractor system also relies on a set of naming conventions and utilizes the dyn
class loading and reflection capabilities of Java. 
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2.3.1    Background: Design by Contract

One of the shortcomings of mainstream object-oriented languages such as C+
Java is that class or interface definitions provide only a signature-based appli
interface, much like the APIs specified for libraries in procedural languages. Me
signatures provide limited information about the method: the types of formal par
ters, the type of returned value, and the types of exceptions that may be thrown.
type information is useful, signatures by themselves do not capture the ess
semantic information about what the method does and promises to deliver, or
conditions must be met in order to use the method successfully. To acquire this
mation, the programmer must either analyze the source code (if available) or re
some externally communicated specification or documentation, none of which is 
matically checked at compile or runtime. 

A programmer needs semantic information to correctly design or use a class. M
introduced Design By Contract as a way to specify the essential semantic inform
and constraints that govern the design and correct use of a class [51]. This inform
includes assertions about the state of the object that hold before and after each 
call; these assertions are called class invariants, and apply to the public interface of th
class. The information also includes the set of constraints that must be satisfie
client in order to invoke a particular method. These constraints are specific to
method, and are called preconditions of the method. Each precondition specifies co
ditions on the state of the object and the argument values that must hold prior to 
ing the method. Finally, the programmer needs assertions regarding the state
object after the execution of a method and the relationship of this state to the s
the object just prior to the method invocation. These assertions are called the postcon-
ditions of a method. The assertions governing the implementation and the use
class are collectively called a contract. Contracts are specification constructs whi
are not necessarily part of the implementation code of a class, however, a ru
monitor could check whether contracts are being honored. An example of a cont
shown in a language independent form in Table 2.3, “Contract Specification for In
ing Element to Dictionary,” on page 32. This example shows the informal con
specifications for inserting an element into the dictionary, a table of bounded capacit
where each element is identified by a certain character string used as key. 

2.3.2    Design by Contract Library for Java

We have introduced Design By Contract to Java by jContractor, a purely library-based
system and a set of naming conventions. The jContractor system does not require an
31
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special tools such as modified compilers, runtime systems, modified JVMs, or
processors, and works with any pure Java implementation. Therefore, a Java pro
mer can use jContractor library and follow a simple and intuitive set of conventions 
practice Design By Contract .

Each class and interface in a Java program corresponds to a translation unit 
machine and platform independent representation as specified by the Java V
Machine (JVM) class  file format [45]. Each class file contains JVM instruction
(bytecodes) and a rich set of meta-level information. jContractor utilizes the meta-level
information encoded in the standard Java class files to instrument the bytecod
the-fly during class loading. During the instrumentation jContractor parses each Java
class file and discovers the jContractor contract information by analyzing the clas
meta-data. 

2.3.3    Design Issues and jContractor Approach

The jContractor design resolves three key design issues when adding contracts to 

• how to express preconditions, postconditions and class invariants and incorp

Design By Contract Example: Dictionary

 Obligations                     Benefits

Client

(Must ensure precondition)

Make sure table is not full & 
key is a non-empty string

 (May benefit from postcondition)

Get updated table where the given 
element now appears, associated 
with the given key.

Supplier

(Must ensure postcondition)

Record given element in 
table, associated with given 
key.

 (May assume precondition)

No need to do anything if table 
given is full, or key is empty string.

Table 2.3: Contract Specification for Inserting Element to Dictionary
32
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• how to refer to (old) entry values of members or arguments, and to check me
results when writing postconditions using standard Java syntax; and 

• how to check and enforce contracts at runtime.

An overview of jContractor's approach to solving these problems is given below:

• Programmers add contract code to a class in the form of methods followingjCon-
tractor's naming conventions: contract patterns. The jContractor class loader rec-
ognizes these patterns and rewrites the code to reflect the presence of cont

• Contract patterns can be inserted either directly into the class or they can be
ten separately as a contract class where the contract class' name is derived fro
the target class using jContractor naming conventions. The separate contract cla
approach can also be used to specify contracts for interfaces.

• jContractor finds the contract patterns during class loading or object instantiatio
by utilizing the meta-level information found in Java class files and by taking
advantage of dynamic class loading in order to perform  "reflective", on-the-
bytecode modification. 

• Programmers enable the run-time enforcement of contracts either by engag
the jContractor class loader or by explicitly instantiating objects from the jContrac-
tor object factory. Programmers can use exactly the same syntax for invokin
methods and passing object references regardless of whether contracts are
present or not.

• jContractor uses an intuitive naming convention for adding preconditions, post-
conditions, class invariants, recovery and exception handling in the form of 
protected methods. Contract code is hence distinguished from the functio
code. The name and signature of each contract method determines the actu
method with which the contract is associated.

• Postconditions and exception handlers can access the old value of any attribute 
by using a special object reference, OLD. For example OLD.count  returns the 
value of the attribute count  just prior to the execution of the method. jContractor 
emulates this behavior by transparently rewriting class methods during clas
loading so that the entry values of OLD references are saved and then made av
able to the postcondition and exception handling code. 

• jContractor provides a class, RESULT, with a static boolean  method, Com-
pare.  In a postcondition it is possible to check the result associated with the 
method's execution by calling RESULT.Compare(<expression>) . A true or 
false is returned based oncomparing the value of <expression>  with the result.
33
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2.3.4    jContractor  Library and Contract Patterns

Table 2.4, “Overview of jContractor Design By Contract Abstractions,” on page
contains a summary of key Design By Contract abstractions and the correspo
jContractor patterns. One of the key contributions of jContractor is that it supports all
Design By Contract principles using a pure-Java, library-based approach. Therefore,
any Java developer can immediately start using Design By Contract without m
any changes to the test, development, and deployment environment after obta
copy of jContractor classes.

DESIGN BY CONTRACT ABSTRACTIONS

Pre-Conditions

Pattern Description

methodName_PreCondition

Method evaluating a boolean result based 
on the same arguments & object state at 
the time of methodName invocation. 
Instrumented code for methodName with 
matching signature executes the pre-con-
dition method before executing body.
Reports error and aborts method if pre-
condition method returns false.

Post-Conditions

Pattern Description

methodName_PostCondition

Method evaluating a boolean result based 
on the values of arguments & object state 
at the time when methodName returns 
without an exception condition. 
Special OLD & RESULT state can be 
accessed in evaluating post-condition.
Instrumented code for methodName with 
matching signature executes the pre-con-
dition after method body is executed.
Reports error and aborts method if post-
condition method returns false.

Table 2.4: Overview of jContractor Design By Contract Abstractions
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Class Invariants

Pattern Description

className_ClassInvariant

Method evaluating a boolean result based 
on the object state at the time of invoca-
tion of each public method and immedi-
ately upon successful return from the 
method. 
Instrumented code for each public 
method executes the class invariant 
method before and after executing the 
method body.
Reports error and aborts method if class 
invariant method returns false.

Exception Handling

Pattern Description

methodName_OnException

Method that gets called when method-
Name's  execution ends abnormally, 
throwing an Exception.
The exception handler provides an 
opportunity for doing recovery by restor-
ing invariants,  resetting state.

Accessing OLD state & RESULT 

Pattern Description

OLD.attr &
OLD.m(...)

Expression evaluates to value of attr  
or result of method m() on method entry. 
OLD references can only be used inside 
postcondition and exception handler 
methods.
Instrumented code for the target method 
records OLD values on method entry.

RESULT.compare(<expr>)

Expression evaluates to true if the result 
evaluated by the method body is equal to 
the expression.
RESULT references can only be used 
inside postcondition methods.
Instrumented code for the target method 
records the value of the result just before 
method body returns.

DESIGN BY CONTRACT ABSTRACTIONS

Table 2.4: Overview of jContractor Design By Contract Abstractions
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2.3.5    Adding Contracts to Java Programs

A programmer writes a contract by taking a class or method name, say put , then
appending a suffix depending on the type of constraint, say _PreCondition , to write
the  put_PreCondition. Then the programmer writes the method body describ
the precondition. The method can access both the arguments of the put  method with
the identical signature, and the attributes of the class. When jContractor instrumentation
is engaged at runtime, the precondition gets checked each time the put  method is
called, and the call throws an exception if the precondition fails.

The code fragment in Figure 5.1 on page 88 shows a jContractor based implementation
of the put  method for the Dictionary  class. An alternative approach is to provide
separate contract class, Dictionary_CONTRACT , as shown in Figure 5.2, which con
tains the contract code using the same naming conventions. The contract cla
(optionally) extend the target class for which the contracts are being written, wh
the case in our example. For every class or interface X that the jContractor ClassLoader
loads, it also looks for a separate contract class, X_CONTRACT, and uses contract spec
ifications from both X and X_CONTRACT (if present) when performing its instrumenta
tion. The details of the class loading and instrumentation will be presente
subsequent sections.

Reflection Based Runtime Instrumentation

jContractorClassLoader

Instrumentation of classes is performed 
on compiled class byte codes on-the-fly 
by the jContractor class loader.
Instrumentation logic is based on using 
reflection to search contract patters in the 
meta-level data found in standard Java 
format class bytecodes.

jContractorFactory

Instrumentation of designated classes can 
be performed on compiled class byte 
codes on-the-fly by explicitly instantiat-
ing objects from jContractor Factory.
Instrumentation logic is the same one 
used by the intrumenting class loader.

DESIGN BY CONTRACT ABSTRACTIONS

Table 2.4: Overview of jContractor Design By Contract Abstractions
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2.3.6    Interaction Of Contracts With Inheritance And Polymorphism 

Contracts are essentially specifications checked at run-time. They are not part 
functional implementation code, and a "correct" program's execution should
depend on the presence or enabling of the contract methods. Additionally, the e
tions that may be thrown due to runtime contract violations are not checked e
tions, therefore, they are not required to be part of a method's signature and 
require clients' code to handle these specification as exceptions. In the rest of th
tion we discuss the contravariance and covariance issues arising from the wa
tracts are inherited.

The inheritance of preconditions from a parent class follows contravariance: as a sub-
class provides a more specialized implementation, it should weaken, not stren
the preconditions of its methods. Any method that is redefined in the subclass s
be able to at least handle the cases that were being handled by the parent, and 
tion handle some other cases due to its specialization. Otherwise, polymorphic s
tution would no longer be possible. A client of X is bound by the contractua
obligations of meeting the precondition specifications of X. If during runtime an object
of a more specialized instance, say of class Y (a subclass of X) is passed, the client's
code should not be expected to satisfy any stricter preconditions than it already
fies for X, irrespective of the runtime type of the object.

jContractor supports contravariance by evaluating the a logical-OR of the precondition
expression specified in the subclass with the preconditions inherited from its pa
For example, consider the following client code snippet:

//  assume that class Y extends  class X

X x;

Y y = new Y();  // Y object instantiated

x = y; // x is polymorphically attached to a Y object 

int i = 5; …

x.foo(i); // only PreCondition(X,[foo,int i])  should be met

When executing x.foo(),  due to dynamic binding in Java, the foo() method that is
found in class Y gets called, since the dynamic type of the instance is Y. If jContractor
is enabled this results in the evaluation of the following precondition expression:

PreCondition(X,[foo,int i])  ∨   PreCondition(Y,[foo,int i])
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This ensures that no matter how strict PreCondition(Y,foo) might be, as long as the
PreCondition(X,foo) holds true,  x.foo()  will not raise a precondition exception.

While we are satisfied with this behavior from a theoretical standpoint, in pract
programmer could violate contravariance. For example, consider the following
condition specifications for the foo()  method defined both in X and Y, still using th
example code snippet above:

PreCondition(X, [foo,int a]) : a > 0 (I)

PreCondition(Y, [foo,int a]) : a > 10 (II)

From a specification point of view (II)  is stricter than (I), since for values of a:
0<a<=10, (II)  will fail, while (I) will succeed, and for all other values of a, (I) and (II)
will return identical results. Following these specifications, the call of previous ex
ple:

x.foo(i);    // where i is 5

does not raise an exception since it meets PreCondition(X,foo,int a). However, there is
a problem from an implementation view, that Y's method foo(int a)  effectively
gets called even though its own precondition specification, (II),  is violated. The prob-
lem here is one of a design error in the contract specification. Theoretically, this
can be diagnosed from the specification code using formal verification and by va
ing whether following logical-implication holds for each redefined method m() :

PreCondition(ParentClass,m)  ⇒   PreCondition(SubClass,m)

For the previous example, it is easy to prove that (I) does not logically-imply (II). It is
beyond the scope of jContractor to do formal verification for logical inference of spec
fication anomalies. jContractor does, however, diagnose and report these types
design anomalies, where any one of the logical-OR'ed precondition expressions evalu
ates to false. In the above example, jContractor would throw an exception to report tha
the precondition has been illegally strengthened in the subclass, thus forcing th
grammer to correct the precondition.

A similar specification anomaly could also occur when a subclass strengthens th
ent class's invariants, since jContractor checks the class invariants when preconditio
are evaluated. The subclass' invariant's runtime violation is caught by jContractor
instrumented code as an exception, with the correct diagnostic explanation.

The inheritance of postconditions is similar: as a subclass provides a more spec
implementation, it should strengthen, not weaken the postconditions of its inte
38
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methods. Any method that is redefined in the subclass should be able to guara
least as much as its parent's implementation, and then perhaps some more, du
specialization. jContractor evaluates the logical-AND of the postcondition expression
found in the subclass with the ones inherited from its parents. Similar anomal
discussed above for preconditions can also appear in postcondition specificatio
to programming errors. jContractor will detect these anomalies should they manife
during runtime execution of their respective methods.

2.3.7    Factory Style Instrumentation Issues

When factory style instrumentation is used, jContractor constructs a contractor subclas
as a direct descendant of the original base class. Therefore, it is possible t
objects instantiated using the instrumented subclass to any client expecting an in
of the base class. Other than enforcing the contract specifics, an instrumented su
say Foo_Contractor,  has the same interface as the base class, Foo, and type-wise
conforms to Foo . This design allows the contractor subclasses to be used with
polymorphic substitution involving the base class. Consider the class hierarchy s
in Figure 2.4:

Figure 2.4: Example jContractor Factory Class Hierarchy

jContractor allows for the polymorphic substitution of either SpecialFoo  objects or
the instrumented SpecialFoo_Contractor  objects with Foo objects.the instru-
mented SpecialFoo_Contractor  objects with Foo objects.

Foo

Foo_Contractor SpecializedFoo

SpecializedFoo_Contractor
39
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2.4    Summary

In this chapter we introduced three bodies of original research work we have
ducted to introduce new language extensions for concurrency, distributed comp
and design by contract for the object oriented languages, Eiffel and Java. W
cussed design considerations and techniques to build extensible, open, object-o
libraries that use and take advantage of the existing low-level system and v
libraries, platforms, frameworks to support these new language extensions. 
high-level programming abstractions are provided to a programmer by following
naming and programming conventions. The design and implementation details 
Class CONCURRENCY, Active-RMI and jContractor are individually presented
respectively in Chapters 3,4 and 5.
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Chapter 3

Introducing Concurrency to a 
Sequential Object-Oriented Language 

3.1    Introduction

The work described in this chapter introduces concurrency to the object-oriente
guage Eiffel by providing a set of class libraries and an associated design method
ogy. The concurrency mechanism we provide is well-suited for client/server 
distributed applications. Since no changes are made to the Eiffel Language [53],
runtime system, the essential principles of sequential object-oriented program
offered by Eiffel are not sacrificed. We present our concurrency abstractions as e
sulated behavior of Eiffel objects, that can be inherited from the Class CONCUR-
RENCY.

The main concurrency abstractions provided by our mechanism are objects a
cesses — active objects — and asynchronous remote method invocation with data-
driven synchronization. The Class CONCURRENCY encapsulates the high-level con
currency abstractions and provides them to objects through inheritance. In addit
the class libraries we also developed a design method which promotes: (1) incrementa
development, (2) stepwise refinement of active objects from ordinary sequential 
objects, (3) utilization of existing Eiffel software Libraries. This design method vi
objects as the unit of design, and facilitates key object-oriented principles such a
ability, data encapsulation, and extensibility. 

We have discussed the fundamental concurrency abstractions in Chapter 2, th
we will summarize the key points in the next section, and in the subsequent se
present the design and implementation details of the Class CONCURRENCY. In Sec-
414141
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tion 3.5.1, “Generation of Concurrent Class Prototypes from a Sequential Clas
page 51 we propose a methodology for writing concurrent applications. The methodol-
ogy describes how a concurrent application can be designed from sequential 
specifications, and how this process can be automated. In Section 3.6.1 we g
example of a bounded buffer implementation and a discussion of various aspe
our concurrency model. 

3.2    Concurrency Model Overview

Our concurrency model unifies the notion of a process and the notion of an object,
arriving at the concept of an active object. Objects become active via inheritance fro
the Class CONCURRENCY. Concurrency is viewed as the parallel execution result
from the creation of active objects and their interactions with each other. 

In order for an object to become active, it must inherit from the Class CONCUR-
RENCY. The Create  function is called first to create a sequential proxy object. The
actual creation of an active object with its own process is achieved by invoking
proxy object’s split  method, which is an inherited behavior from the Class CON-
CURRENCY. The split  method starts a new process with an independent threa
control and returns back to the client after the active object is created and communica
tion ports are established and initialized. Then the active object begins execu
special start-up method, scheduler . The design method requires that a method ca
scheduler  is defined for each class that inherits from CONCURRENCY. The
scheduler  method specifies how to serve the requests generated by clients using the
remoteInvoke  method. All requests are delivered as actual messages to the s
using a transparent inter-process communication (IPC) mechanism. Since multip
ents can simultaneously request services, the communication is buffered. 

After a split , the server object in the client’s process act as a proxy to the actual
active server object. This proxy object transparently and asynchronously relay
requests to the active server’s request queue, and returns the results of requests whi
are asynchronously delivered to its result queue by the server. 

Once a server object has been made active, via a split  operation, new clients tha
want to invoke the server’s methods must create their own proxy copies, and u
attach  method to set up the association between the proxy and the active s
object. Attach  is significantly cheaper than split , since it doesn’t involve creation
of a new address space, Attach  is also the only mechanism to share active obje
Algorithms for split  and attach  are given in Section 3.3.1. 
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In the sequential object oriented paradigm, method invocation is a synchronous proce-
dure call, and objects are passive entities, doing work only when their methods a
invoked. The Class CONCURRENCY implements a non-blocking, asynchronous
method invocation mechanism called remoteInvoke . Consider the following code
where obj  is an active object, 

call_id:INTEGER; 

return_value: T;  

call_id := obj. remoteInvoke( "method",arg_list  ); 

.

. }concurrent execution with obj  

.

return_value ?= obj. claimResult( call_id ); 

--Use call_id to obtain the associated result.  

The client does not wait for the completion of obj’s  execution of method, but concur-
rently continues executing its own code until the point in its own execution whe
actually uses the result of the execution of method. The part of the client’s code show
with dots above is executed in parallel with the obj’s  code. The result returned b
claimResult  conforms to all types, so it is assigned to the return_value, using the
?= reverse-assignment attempt operator. The type, T, of return_value is the actual type
returned by obj’s method feature. This is a data-driven synchronization schem
based on asynchronous message passing. 

The Class CONCURRENCY provides two methods to access the result of a rem
method invocation. Both of the methods take a single argument, a call_id, which is
returned by the corresponding remote invocation as a handle to obtain the actua
in the future. First method, claimResult , as used in the example of the precedi
paragraph, returns the result delivered by the server. If result is not available ye
claimResult  blocks until it becomes available. The other method, resultReady , is
a non-blocking test for the availability of result of the remote invocation associa
with the call_id. All the underlying communication is encapsulated and hidden f
the application. 

Since active objects reside in separate address spaces, objects that appear as
ters of remote methods of active objects can not be passed by reference but m
(deep) copied. 
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We have introduced a new design method which provides static-type checking
variable-size argument passing capabilities for remote invocations which result
simpler, safer, and more transparent utilization of the remoteInvoke  method. Using
FUTURE type results also provides simpler and more transparent accessing 
result of the remote invocation. Explicit invocation of claimResult , and
resultAvailable  is also eliminated by the utilization of the FUTURE type. Fol-
lowing code fragment is an example that shows how the design method improv
shortcomings of the previous example which used the library abstractions for co
rency directly. 

future: FUTURE; 

return_value  : T;   

future := act_obj. method( arg1, arg2 ... ); 

. 

. }  concurrent execution with obj 

.

return_value ?= future. data; 

--implicit claimResult  from act_obj 

Message acceptance in our model is asynchronous and explicit. Accepting a message
is separated from actually serving the request. Messages delivered to the comm
tion buffer but not yet accepted into the request_queue  are called pending requests.
A queue of request messages, request_queue , contains all the accepted requests 
the client objects. Each entry in the queue contains all of the parameters of the c
remote invocation request, including the call_id and reply address. The server obje
explicitly needs to show intent to accept messages: getRequest  is a potentially
blocking call that commits all pending requests into the request_queue , and blocks
if no pending request exists until the first one arrives. A non-blocking version of
method is the pendingRequestExists  method. 

The scheduler  has unrestricted access to the request_queue , and it can inspect
the parameters and names of the requests in the queue in order to select and se
of them. It can also choose to wait for a certain type of request or a certain condit
arrive before it selects a request for service. Sending a result back to a client af
service of a request is also done asynchronously and explicitly, using the sendResult
primitive. 
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Since there is a single thread inside the scheduler , the scheduler serializes the ex
cution of its methods. This also applies to the passive objects within each pro
since no sharing of passive objects is possible due to the deep copy semantics o
ments of remote_invocation . Therefore, all requests to the methods of a pass
object are also serialized. This eliminates the need for synchronization insid
methods of objects and allows us to have all synchronization points correspo
communication events. 

Objects that are inherently sequential may be designed the same way they wo
designed in sequential Eiffel. This enhances reusability in two ways: objects already
designed for sequential applications can be readily reused in concurrent applications;
non-concurrent applications can directly use such objects designed in conc
applications. 

Reuse of active objects is supported in a different way. Since most of the synchro
tion and request-service policy is implemented inside the scheduler  method, a con-
current class can be extended via inheritance and redefinition of the scheduler
method. 

3.3    Design of the Class CONCURRENCY

The Class CONCURRENCY encapsulates a state as well as a behavior that collect
describes the notion of active objects. The state contains the data structures involve
the communication, scheduling and synchronization events that take place duri
life-time of each individual object. The behavior provides the interface to create a
objects, and request asynchronous execution of their features and communica
them. 

The Class CONCURRENCY is part of the Parallel Library which also includes other
classes used for the implementation of low-level IPC and UNIX interface. 

A short description of the Class CONCURRENCY is given in Appendix A; in the sub-
sequent sections we provide more detailed explanations of the contents of this cl
Section 3.6 we give an example application using the concurrency mecha
described here. 
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3.3.1    Design and Implementation Details

Pseudo code describing the split  method is given in Figure 3.1. A split  call
implicitly starts a handshake protocol between the newly created active server p
and the calling client, the proxy object. The proxy’s port is created first, and its param
eters are passed to the server as part of its initialization. Then the server creates
communication port, and acknowledges the proxy by providing info about its own
communication parameters. At this point the handshake is accomplished and theproxy
and server are ready to start sending request and reply messages to each othe
proxy object has its own communication port. All proxies send their request mes
to the same port at the server process. 

Figure 3.1: Pseudo code: split method

split ()  
begin  
 initialize_caller_side_IPC_parameters(); 

 -- create and initializes a dedicated communication port
 -- pass caller side IPC info to the new process created
 -- by fork() or other system call in Unix. 
 spawn_new_process();

 in parent process  --  i.e. proxy side 
 create_Result_queue(); 
 wait_acknowledge(); --  from the child 
 -- "ack" contains info about childs’ IPC parameters 
 record_server_info(); --  using "ack" message 
 return();  --  from proxy to caller 
 in child process  --  i.e. newly created active object 
 initialize_server_side_IPC_parameters(); 
 acknowledge_parent(); 
 --  sends "ack" to caller, piggybacking the new IPC info; 
 obj := create_server_object(); --  first and only object 

in this process. 
 obj.scheduler(); --  invoke obj’s scheduler method. 
 --  transfers control to scheduler  of the newly created active 
 -- object scheduler describes obj’s concurrent activity. 
end  --  split 
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Figure 3.2 gives the pseudo code for the attach  method. Attach  is similar to
split , except that it sets up an association with an already existing active s
object. 

Figure 3.2: Pseudo code: attach method

Figure 3.3 describes the implementation of the remoteInvoke  method. The argu-
ments of the remoteInvoke  method are the name of the method to be invoked 
the parameters supplied to that method. The remoteInvoke  method can only be
issued to a proxy object. This proxy will create a request package and asynchro
deliver it to the active server. The remoteInvoke  call returns a unique call_id, which
can be used to access the result of the invoked method. In order to access the r
a previously invoked method, another abstraction is provided via the claimResult
method which takes the call_id number as the argument and returns the result if
been delivered by the server. If result is not available yet, then claimResult  blocks
until it is ready. The type of the result object returned by claimResult  is ANY, which
statically conforms to all types. This enables claimResult  to be a general resul
delivery method. The result is assigned to an object of the correct result type exp
by the client by using Eiffel’s reverse-assignment attemp operator, ?=. 

attach( server_info )   
begin  

--  create and initialize a dedicated communication port
--  Note: no new process is spawned. 
initialize_caller_side_IPC_parameters(); 

 create_result_queue(); 
 record_server_info(); --  using the parameter passed. 

 return();  --  without any handshake 
end  --  attach 
474747
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Figure 3.3: Pseudo code: remoteInvoke method

The method, resultReady  (which also takes a claim_number  argument) is non-
blocking and can be used to test if result of the associated request is available. 

Since the Eiffel language at the time the concurrency mechanism was develop
not support the notion of meta-classes, we supplied the method-name to remoteIn-
voke  as a string. Also, since Eiffel does not support variable-number of argumen
methods, remoteInvoke  expects a single variable sized generic array that cont
the actual arguments of the call. The reverse-assignment operator, ?=, is used to
extract the actual arguments from the arguments array. Passing the name 
method as a string, and packaging/unpacking the arguments manually is error 
and not checkable by the compiler. To alleviate these problems and to provide
safety, the methodology described in next section provides an alternative way of
the remote method call without explicitly using the remoteInvoke  method. 

Each active object maintains a queue of requests, called Request Queue. Each entry in
the queue contains all of the parameters of the clients invocation, including
claim_number  and communication parameters to send back the result of the co
tation. This server object explicitly needs to show intent to accept messages. getRe-

quest  is a blocking call that commits all pending requests into the Request Queue, and
blocks if no pending request exists until the first one arrives. A non-blocking ve
of this method is the pendingRequestExists  method. The Request Queue is avail-

remoteInvoke( method, method_parameters )   
 begin  
 Request_package := create_request_package(); 
 claim_no := unique_claim_no(); 
 set_method_fields(Request_package, method,

method_parameters); 
 set_IPC_fields(Request_package, claim_no, IPC_info); 
 -- IPC_info about both server and client packed in server
 -- will use this stored IPC info to send the result back

 
 -- asynchronous send to the server using info on package 
 send_package( Request_package ); 

 return ( claim_no ); --  to the client code 
 --  without waiting for the result from the server 
 end  --  remoteInvoke 
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able as a local object, and is implemented as a queue that supports all the g
queue methods of Eiffel Data Structure Library. 

The server object chooses one of the pending requests from the queue, an
applies the method to itself, using the parameters that are also packed into the req
and then returns the results back to the client upon completion of service also
asynchronous way, using the sendResult  method. The claim_number  is also
returned along with the result to the object who invoked the method, so that this
ent) object can claim the result, using the claimResult  method. This is a blocking
method which forces synchronization with the server if the result associated
claim_number  has not been returned yet. All the results of remote-invocations
queued into result_queue in an asynchronous manner and stay there until they
claimed. On the other hand, the resultReady  method does a simple non-blockin
search of result_queue, to test whether a particular result is delivered yet. 

3.4    Implementation Status

The described system is implemented using version 2.2 Eiffel by ISE [53], runnin
Sun’s UNIX based Sun OS 3.0. It is written largely in Eiffel, with the low level ope
ing system and inter-process-communication (IPC) routines written in C langua
external Eiffel routines. The asynchronous communication is implemented u
Internet domain sockets, and (UDP) datagram messages.

3.5    A Method for Designing Active Objects

The first step of the methodology is to identify the active objects. Our approach
start the design using a sequential prototype of the active object. To illustrate the
consider the following sequential Eiffel class, Class A, shown in Figure 3.4. The ellip-
sis in the code denote implementation details that are omitted for a clearer pre
tion.

We propose a way to extend the sequential class, Class A to a concurrent one. The
concurrent version, Class Conc_A is given in Figure 3.5. Class Conc_A exports the
same methods, foo and bar. But both foo and bar are redefined as remote methods in
Conc_A. 
494949



class  A  
export  

foo, bar 
inherit  X,Y, ... 

feature  

. . . --  implementation details 

foo(arg1: T1 ): T_foo is  
do 

. . . 
end 

end ; --  Class A  

Figure 3.4: Sequential Class: A 

class  Conc_A  
export  foo, bar  
inherit   CONCURRENCY  

redefine scheduler;  
A 

rename 
foo as  A_foo, 

feature  
args : ARRAY[ANY]; 
scheduler is  

local  foo_arg1 : T1; 
do 

from  
getRequest; 

until  false
loop  -- forever

current_request := request_queue.remove;
if  current_request.feat_name.equal(“foo”)
then

foo_arg1?= current_request.
parameters.item(1);

send_result(A_foo(foo_arg1));
else  

-- error handling needed
end
if  request_queue.empty or  
50
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pendingRequestExists
then  

getRequest; 
end ; - if

end ; --  loop 
end ; --  scheduler 

foo(arg1: T1 ): FUTURE is 
require   is_proxy  
do  

args.put( arg1, 1); 
Result .Create( Current,

 remoteInvoke("foo", args); 
end ;  

end ; -- class

Figure 3.5: Concurrent Version of Class A.

3.5.1    Generation of Concurrent Class Prototypes from a Sequential Class

A concurrent class can be generated from a sequential one in an automated wa
example shown above extends the sequential Class A to a concurrent class, Conc_A.
The scheduler  generated for Conc_A uses a FIFO policy. This scheduler can then
modified to express more complex synchronization constraints. 

The generation of a concurrent class, such as Conc_A as given above, is very muc
like a stub generation process for an RPC mechanism. The key steps in ext
Class A to Class Conc_A are: 

1. Export the same features in Conc_A as in A by copying A’s export clause; 
2. Inherit from the classes CONCURRENCY and A. 
3. Redefine scheduler inherited from CONCURRENCY.
4. Rename the exported features so that their sequential implementation in Class A 

can be utilized inside Class Conc_A. The new name is derived from the old 
name in Class A by prefixing it with the class name, A. For example, the name 
A_foo in the Class Conc_A can be used to execute the method foo of Class A. 
Since A_foo is not exported, the sequential implementation of foo found in 
Class A is hidden from clients of Class Conc_A. 

5. Construct the exported features of Class A. Using the same names for the 
exported features in Conc_A results in the sequential implementation of these
features to be overridden by the new ones defined in Conc_A. For example, foo 
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method in Conc_A can be automatically generated by (i) copying the definiti
in Class A, (ii) changing its return type, say T, to FUTURE, and then (iii) rewrit-
ing the body part. The new body consists of two parts: (1) constructing of a
arguments list, by copying the formal arguments of foo into an array, and then 
(2) creating and returning a FUTURE type result object. The result, which is a
FUTURE type object, is initialized by providing the following two arguments 
its Create method. First is the value of Current., which is the proxy object, and 
second is the claim number returned by the remoteInvoke ( "foo", arguments-
array) call. A ’require is_proxy’ pre-condition is added to the method, to ensu
that invocations of foo will be handled only by proxy objects that have execut
a split  or attach . 
Redefinition solves a problem which arises due to polymorphism. An active 
object of class Conc_A, say conc_obj, can be polymorphically assigned to an 
object reference of Class A, say a_obj. Without the redefinition of foo, the call 
a_obj.foo() would result in the invocation of foo defined in Class A. This vio-
lates the remote invocation protocol of the dynamic and active object conc_obj. 
The redefinition ensures correct behavior by invoking the foo method of 
Conc_A. 

6. Construct the scheduler  method. A FIFO scheduler can be constructed cre
ing a loop. At each iteration of the loop: (1) pending requests are committe
the request_queue, (2) one request is selected from the queue, (3) the reque
operation is performed and finally (4) the results are sent back asynchrono
using sendResult . 

7. Generate the necessary data structures used by remoteInvoke (the args array), 
and other temporaries needed when a request is selected by the schedule
servicing. Depending on which method is being served, temporary objects 
needed to supply the correct-typed arguments to the method. For example
local object foo_arg1: T1 can be used to during the servicing of a foo request. 
Before the actual call, the temporaries must be initialized, using the revers
assignment attempt (?= operator) with the argument array part of the reques
package. 

Note that the steps described above propose a way of automating the process of
extending a sequential class to a concurrent class prototype. This methodology
overcome two problems related with type-safety, and static type-checking, bo
which arise due to directly calling the remoteInvoke  method by clients. These two
problems are: (1) having to pass the method argument as a string; (2) handling of var
able number of arguments. The methodology provides a way to indirectly
remoteInvoke  using the same (type-safe) syntax of a sequential call. 

Using FUTURE objects as results of remote method invocations eliminates the ne
keep track of the call_id and server_object proxy associated with the remote invoca
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tion. Also eliminated is the need to explicitly call claimResult  to obtain the result.
Using FUTURE type objects makes it simpler and more transparent to use the claim-
Result  and resultAvailable  methods of the Class CONCURRENCY.

3.5.2    Reusability Issues

An important aspect of our design method is its support for software composition
reuse. This support is due to the fact that our concurrency mechanism is comp
with the key object oriented principles for providing reusability. These principles are:
data encapsulation, data abstraction, polymorphism, inheritance and genericity [

Data encapsulation property of objects in sequential Eiffel is respected by our me
odology. Active objects have a protected internal state which can only be acces
modified by invoking a method specified in its interface. Proxy objects do not h
any direct means to modify the state of the active objects. They are only respo
from delegating requests and collecting replies. Therefore proxy objects do not v
the data encapsulation property of the active objects. The active object has co
autonomy over managing its internal state. 

Data abstraction is the mechanism which frees the client of a class from havin
know its internal representation. In our methodology the client of an active server
not need to know how its request will be delivered and serviced. The client si
contracts a job (by remote method invocation) to the server and then check on th
tractor’s status only when the need arises. The only point the client needs to sy
nize with the server is when the result is needed, and this does not require any
concurrency/synchronization related information about the server’s implementati
be known by the client. 

Inheritance is the key technique used in the methodology to create concurrent ob
The way inheritance is used in our methodology as a software development tech
allowing extension, specialization and stepwise refinement is essentially the sa
in sequential Eiffel programming. 

Objects that are inherently sequential may be designed the same way they wo
designed in sequential Eiffel. This enhances reusability in two ways: objects already
designed for sequential applications can be readily reused in concurrent applications;
non-concurrent applications can directly use such objects designed in conc
applications. 

Reuse of active objects is supported in a different way. Since most of the synchro
535353
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tion and request-service policy is implemented inside the scheduler  method, a con-
current class can be extended through inheritance and redefinition of the scheduler  . 

A discussion of how our methodology supports polymorphism is given in the section
titled: “A Method for Designing Active Objects” on page 49 in step 3. 

3.6    An example: Bounded Buffer

Figure 3.6 presents the BUFFER Class, which defines a sequential buffer class wit
bounded storage. We design ACTIVE_BUFFER Class by applying the methodolog
presented in the previous section. We modify the FIFO scheduler generated 
methodology in order to express different synchronization needs of the active bo
buffer example. The Class ACTIVE_BUFFER is presented in Figure 3.7. 

Figure 3.6: Sequential Buffer Class

 class  BUFFER [T] -- A Sequential Bounded Buffer Class
 export  
   put {PRODUCER}, get {CONSUMER} 
 feature  
  buffer : FIXED_QUEUE [T] ; -- actual storage 
  put ( Item: T ): BOOLEAN is  -- 
   do  
    if not  buffer.full then  
     buffer.put (Item); -- append to buffer 
     Result := true; 
    else  -- return code for failure 
     Result := false; 
    end;  -- if 
   end;  -- put 
  get : T is  -- 
   do  
    if not  buffer.empty then  

-- remove the oldest item in buffer 
    buffer.remove; 

-- return the removed item 
    Result := buffer.item; 

    else  -- return a Void object for failure 
     Result.Forget; -- Result made Void 
    end;  -- if 
   end;  -- get end  -- class BUFFER 
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Figure 3.7: ACTIVE BUFFER Class

class ACTIVE_BUFFER -- A Concurrent extension to BUFFER 
export  put {PRODUCER}, get {CONSUMER} 
inherit  

CONCURRENCY 
redefine  scheduler; 

BUFFER    
rename  

  put as  BUFFER_put, 
   get as  BUFFER_get 

feature  
 args : ARRAY[ANY]; -- argument list for remoteInvoke 
 scheduler is  -- execution begins here 
  local  
   put_Item: DATA; 
  do  
   from  

-- buffer allocated only by the active object
    buffer.Create; 

 -- initially block until request(s)arrives 
    getRequest; 
   until  false 
   loop  -- i.e. loop forever 

-- pick a request 
   current_request := request_queue.remove; 
   if  current_request.feat_name.equal("put") 

and  not  buffer.full then  
   put_Item?=current_request.

parameters.item(1);

-- ack producer asynchronously
   sendResult(BUFFER_put(put_Item)); 

    elsif  current_request.feat_name.equal("get") 
and  not  buffer.empty then  

    sendResult( BUFFER_get ); -- to consumer 
    else  -- cannot serve the current_request 
   request_queue.put_left(current_request); 

-- skip over 
   end;  
    if  request_queue.empty 

or  pendingRequestExists then  
    getRequest ;  -- blocks only if empty 
    elsif  request_queue.offright then  

-- go back to oldest in queue 
    request_queue.start; 
    end;  
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   end;  -- loop 
  end;  -- scheduler 

 put ( Item: DATA ): FUTURE is  -- executed only by the proxy 
  require  is_proxy 
  do  

  args.put( Item, 1); -- initialize arguments array 
   Result.Create(Current, remoteInvoke( "put", args) );  
  end;  -- put 

 get : FUTURE is  -- executed only by the proxy 
  require  is_proxy 
  do  
   Result.Create(Current, remoteInvoke( "get", args) );  
  end;  -- get 

end  -- class ACTIVE_BUFFER 

In order to prevent the producers from producing unboundedly, put return
acknowledgment back to the producer in an asynchronous manner. The implem
tion of PRODUCER, Figure 3.8, allows a producer to have at most one outstandin
request. The data-driven synchronization of the producer allows it to produce the
item without having to wait for an immediate acknowledgment.
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Figure 3.8: Producer Class of Bounded Buffer Example

class  PRODUCER  
inherit  

 CONCURRENCY 
  redefine  scheduler;

feature  
 b_buffer : ACTIVE_BUFFER ; -- shared buffer object 
 Data_item : DATA; -- unit of production 
 buffer_params : SOCKET; -- IPC info to attach buffer 
 synch : FUTURE; 

 scheduler is  -- execution begins here 
  do  
   from  
   b_buffer. Create ; -- create proxy 
   getRequest ; -- wait until buffer info arrives 
   buffer_params?=request_queue.first.parameters(1); 
   b_buffer.attach(buffer_params);  

     〈  Produce First Data Item  〉 
   until  false 
   loop  -- forever 
   -- asynchronous remote method invocation.

synch:= b_buffer.put( Data_item );

   -- at this point producer continues to execute 

   〈  Produce Next Data Item  〉  

-- wait result here
   synch.data; 

   〈  More processing 〉   
   end;  -- loop 
  end;  -- scheduler 

end  -- class PRODUCER  
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Figure 3.9: Consumer Class of Bounded Buffer Example

3.6.1    Notes on the Bounded Buffer Example

An interesting feature of the given implementation is that the ACTIVE_BUFFER Class
has complete autonomy over how it services the requests of its clients, the scheduler
routine being the only place where these decisions are made. This is importan
respect to reusability since one may reuse the ACTIVE_BUFFER Class with ease, only
redefining the scheduler  routine, in order to introduce a new protocol or specific
tion. Since all the synchronization code is confined to the scheduler. One can 
extend the given class by inheriting and/or modifying the synchronization code
functional code separately. Another advantage of this approach is that the func
code remains "pure", and can be written without worrying about the synchroniz
issues which could otherwise create dependencies between relatively indepe

class  CONSUMER  
inherit  

 CONCURRENCY  redefine  scheduler; 
feature  

 b_buffer : ACTIVE_BUFFER; 
 data_item : DATA; 
 buffer_params : SOCKET; 
 box: FUTURE; -- FUTURE DATA result returned by remote invocation
 scheduler is  -- execution begins here 
  do  
   from  
   b_buffer.Create ; -- create proxy
   getRequest ; -- wait until buffer info arrives 
   buffer_params?=request_queue.first.parameters(1); 
   

b_buffer.attach(buffer_params);  
   until  false 
   loop  -- forever 

 -- generate a remote request for “get”
    box := b_buffer.get; 

 -- wait here until data becomes available
    data_item ?= box.data; 
    〈  Consume Data Item  〉  
   end;  -- loop 
  end;  -- scheduler 

end  -- class CONSUMER  
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parts of code in different modules, and compromise the encapsulation and proc
abstraction properties. 

To show how flexible and expressive the approach is, we discuss alternative w
implementing different synchronization constraints using our buffer example. L
say we would like to allow consumers to be served even if there are earlier req
from producers. We can simply change the policy executed at each iteration 
scheduler loop to choose the oldest "get" type request from the request queue if buffer
is not empty. This can be done by scanning the request queue, and serving aput"
request only when (1) there is no "get" request and buffer is not full; or (2) whe
buffer is empty. Another application might be to respect real-time scheduling 
straints of the service requests, where this information is made available as a p
ter of the service request. Since we have the ability to "look into" the request mes
without selecting them, we can program many complex scheduling algorithms. 

3.7    Summary

We have presented a method of writing concurrent applications in Eiffel Langu
The method introduces concurrency as an inheritable property of objects specif
the Class CONCURRENCY, and provides a methodology using inheritance to w
concurrent, distributed applications. Indeed what we have done in this work c
seen as a way of placing Eiffel Language on top of the concurrency that exists 
underlying processor or operating system level, rather than placing concurrenc
the Eiffel Language. 

In our approach, the active server object can choose the type of requests to res
and in what order. This is a very powerful mechanism addressing the problem of
ing with local delays [46]. 

An important issue addressed by our methodology is reusability. Reusability is
enhanced by separating the sequential and concurrent aspects of a class. A
scheduler  method can be used to express most of the synchronization code a
concurrent behavior of the object. Reusability and modifiability are enhanced 
one can easily extend a given class by inheriting and/or modifying the synchroniz
code and functional code separately. Reusability is also supported by preservi
data abstraction, data encapsulation, genericity and polymorphism principles of
object-oriented programming. Section 4.2 addresses the reusability issues in g
detail. 
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Another issue addressed by the methodology is the static type checking of m
names and the arguments that are to be remote_invoked. 

The ability to express powerful synchronization constraints as reusable software
ponents emerges as a strong point of the method. The concurrency mechanis
sented here is designed for writing distributed applications. It does not assu
shared-memory model and supports distribution of the active objects over a netw

An issue that requires further investigation is about identifying the synchroniz
and correctness needs in the presence of multi threaded schedulers in shared-
spaces. Without having explicit control over the scheduling and preemption of m
ple threads in a shared-address space many new technical difficulties are intro
Some of these difficulties are related with mutual exclusion of the execution o
objects’s methods, and non-reentrant system calls. Some of these issues hav
mentioned in [15]. A concurrency mechanism with multi threaded active objects 
satisfactorily address the interference problem with respect to data encapsulatio
cedural abstraction and reusability issues, that emerge due to the potential ar
interleavings of an object’s methods. 
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Chapter 4

Active-RMI: Asynchronous Remote
Method Invocation System for Distrib-
uted Computing and Active Objects

4.1    Introduction

In this chapter we discuss the design and implementation of the Active-RMI (Active
Remote Method Invocation) system. Active-RMI is a set of class libraries, tools, and
design method which provides high-level abstractions for building distributed 
applications based on active remote-objects. Active-RMI is a natural  extension  of ou
earlier work[41] involving introducing concurrency extensions to Eiffel langu
using class libraries. Active-RMI is implemented as an extension to the Java-RMI sys-
tem which was integrated by Sun into the Java Language[31] with the release o
1.1. The key contributions of Active-RMI system to distributed computing is th
extension of  Java-RMI  with the following features:

1. Asynchronous remote method invocation with  future-type results and asyn
nous result delivery mechanism from the server to the caller.

2. On-demand remote-object creation by a client, with transparent class expo
uploading.

3. Active-object semantics for remote objects created using Active-RMI protocol.
4. User programmed scheduling and synchronization of  remote method invo

tions.

Active-RMI libraries allows programmers to design and implement remote ac
object interfaces. Using standard Java syntax, Active-RMI applications can create new
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active remote objects or lookup existing active remote objects on participating h
Standard Java object references and method invocation syntax is used to p
asynchronous method calls on remote objects. Remote hosts where new active 
get created need to be active and willing participants in the Active-RMI protocol, but
they do not need to have a-priory knowledge of the types of active objects tha
will host. Active-RMI protocol transparently exports the needed class definitions 
demand-based fashion. Remote objects are created as autonomous agent-like 
with a thread starting execution at a designated scheduler method. Active objec
access their private request queue of incoming Active-RMI requests from clients. We
use the term “active” to describe the remote Active-RMI object’s ability to execute
arbitrary code as well as its ability to make autonomous scheduling decisions 
which requests (if any) to serve after inspecting its request queue. 

4.2    Overview of Active Remote Method Invocation System

Writing a distributed application using Active-RMI requires providing the following
definitions for each active remote-object type:

• Interface specifications.

• Implementation classes for the interfaces.

• Scheduler method  implementing active object behavior and synchronization.
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Figure 4.1: Asynchronous Remote Method Invocation

We call any object that creates or obtains a reference to an active remote-objeccli-
ent of the remote object. Using its interface and implementation definitions, an a
remote object can be created and referenced by client programs using an RMI
transport layer connecting different hosts participating in the distributed computa
Active remote-objects can be created on any host connected to the Internet that
Active-RMI Server daemon running. We refer to the host on which an Active-RMI
object has been created as a server. It is possible for a client object to be involved 
some distributed computation where it acts as a server to some other clien
Active-RMI system is built   as an extension to Sun's Remote Method Invoc
(RMI) system, and uses the same Java virtual machine, remote reference laye
similar  stub/skeleton creation and deployment  mechanism.
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4.2.1    Remote Object Referencing And Type-safety

A client object declares and references an Active-RMI object using its interface and
implementation specifications using the same syntax as a standard Java obje
client can   obtain a remote object reference either by using  Active-RMI naming/
lookup service or by receiving the remote object reference as a parameter or
from another client. Alternatively, a client can create a new active remote-object on 
remote Active-RMI  server host using Active-RMI remote-object creation service.  Th
client can invoke public methods of an active remote object as specified in its re
interface specification using standard Java syntax for object method calls. Since bot
the interface and implementation specifications of Active-RMI objects, and all Active-
RMI libraries are written in Java,  any standard Java compiler can  statically en
Java’s strong typing for the client’s code

Figure 4.2: Active Remote Object Creation
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4.2.2    Semantics Of  Active-RMI Remote Method Call

Despite the similarity in syntax, the semantics of an Active-RMI remote-method call is
different from that of a standard Java method call. There are three main differe
asynchronous call semantics; by-value parameters-passing instead of passing loca
object references; and the remote computation’s being carried out in a differen
runtime environment, in a separate thread and address space. Figure 1. illustra
object layout and references and the communication aspects of an asynch
Active-RMI call. The call, on the client side  returns immediately after registering th
call locally with its Active-RMI call registry, without waiting for the remote comput
tion to be completed. The value returned is a unique pseudo-result that the client
to convert into a call-handle. The call-handle object  can be used to do a blocking w
or non-blocking query about the delivery of actual result from the server. Re
method calls involve delivering the call as a request-packages into remote ob
request queue, and receiving the result also as a network package delivered thr
call-handle. When marshalling the local-object reference parameters of the call 
request package, or the result back to the client, Active-RMI  uses object-serialization
to flatten and pass deep-copies of local objects.

4.2.3    Active Objects And Scheduling

On the server side,  upon receiving a create remote-object request from a clien
Active-RMI server  object creates the active remote object with the requested typ
starts a new thread which begins executing in the object’s scheduler  method.  A
remote-stub reference is returned  to the client,  which can be used to invoke r
methods of the active object, or can be passed to other clients. The scheduler
method, if provided as part of the object’s implementation overrides a default (F
scheduler and is written as a standard Java language method. By allowing Active-RMI
objects to describe a behavior of their own using its scheduler  method, and have
autonomy over how and when to serve incoming requests Active-RMI introduces
active objects as en extension of  the passive object model of Java. Active-RMI system
also provides each active object with a dynamic queue of requests, where each
in the queue is an aRmi_Request object which has been asynchronously delivered 
the underlying remote reference layer as a result of a client’s invocation of one 
remote Active-RMI object’s public methods.  The scheduler method can wait 
arrival of requests into the queue, inspect the contents of each request message,
ing the method’s signature and the values of its actual parameters. When the sch
decides to “serve ” one of the requests, it is taken off the queue, executed and
result is asynchronously delivered back to the client.
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4.2.4    Remote Object Creation And Distribution

Figure 2. illustrates the object layout, references, communication aspects and
flow during remote creation of an active object. On each host where clients
allowed to create active remote-objects, a daemon process running our Active-RMI
library’s  ARrmiServer_Impl   must be started. This process registers itself wit
standard Java RMI rmiregistry service under the name “aRmiServer”. Clients can
locate the aRmiServer using rmiregistry  lookup with that name on the  server  host.

A new active remote object is created on the server using the  createRemoteObject
method  of aRmiServer , by passing the remote-object’s class name.  If a local c
by the requested class name is not found at the server host, an exception is 
forcing the client’s stub to transparently send a  ClassExporter  object, ce . The
server uses the class exporter object to transparently install  a new aRmiClass-
Loader,  downloads required client-side classes from the client and finally create
requested active object on the server. A stub reference to the active object is re
to the client.  In order to facilitate the potential need for installing a new class load
required by Active-RMI’s remote object creation protocol, the aRmiServer  process
is started with   a custom security manager, aRmiSecurityManager ,  which allows
installing  new class loaders.

4.3    Architecture of Active Remote Invocation System

The Active-RMI system is designed as an extension to Sun’s Java RMI system and
uses RMI libraries at implementation level whenever suitable. The classes and
faces comprising the Active-RMI class library, and its inheritance hierarchy is sho
in Figure 3. While this approach creates a tight coupling between our implemen
and Java RMI, it provides some valuable benefits: since Java RMI is part of the stan-
dard distribution of Java Developer Kit as of JDK 1.1, Active-RMI libraries can be
quite compact, reducing the amount and size of network traffic and initialization o
head for certain applications that need to dynamically download the Active-RMI class
libraries; Active-RMI system uses the same standard Java Virtual Machine  as RMI for
runtime support, allowing our design to introduce new features and extensions w
making modifications to the Java language or its virtual machine; applications
already use RMI can be easily extended to take advantage of Active-RMI extensions;
future enhancements to RMI with regards to performance, reliability, security, etc., c
directly benefit Active-RMI applications as well.
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Figure 4.3: Active-RMI Class Library Organization
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Active-RMI Class libraries are organized with two primary components: classes
tools  to support client applications and those to support server implementations. This
delineation is highlighted in Figure 3 where the grouping of client and server clas
shown as separate blocks.  A high-level description of the functions supported b
client and server classes are described here, and the rest of this section elabo
the functional description of the classes. 

4.4    Client Abstractions and Functions

4.4.1    Active Remote Object Interfaces And Implementations

A client program can refer to an active remote object using its interface defin
Each active remote interface must extend the interface ActiveRemote  and contain a
list of the public methods that can be remotely invoked. The ActiveRemote  interface
of the Active-RMI library  extends the Java RMI’s Remote interface. Both of these
interfaces have empty bodies and simply serve as marker types used by the automati
stub and skeleton generator utilities and by the Java Virtual Machine (JVM) to t
parently use the remote reference layer. The JVM implicitly invokes the corresp
ing stub method during the method invocation of an ActiveRemote object instead of
the method from its implementation class. The example below describes an acti
remote object interface,  ActObj,  which has  a single method foo taking an int
and an Object  argument and returning a result of object  type, Bar:

interface  ActObj extends  ActiveRemote 
{

public  Bar foo(int a, T tObj);
}

A concrete class must implement the active remote interface in order for a clie
server process to be able to create the actual active object. Active object implem
tion classes must extend Active-RMI’s UnicastActiveRemoteObject class. A cli-
ent or server program, providing such an implementation class can create new
objects on authorizing hosts. Once the active object is created a remote stub re
can be exported to any client using its active remote interface definition. The Active-
RMI library implementation of the UnicastActiveRemoteObject class extends
the Java RMI library class UnicastRemoteObject,  and provides the active remot
object functions of the Active-RMI protocol to both clients and servers. An examp
implementation outline of the ActObj  interface is  presented below:
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class  ActObj_Impl  extends  UnicastActiveRemoteObject
implements  ActObj ... 

{
public  Bar foo(int a, T tObj) { ... } ... 

}

4.4.2    Active Remote Object Creation

Active remote objects can be created on a remote host using the Active-RMI server
interface, aRmiServer . An Active-RMI server process implementing the aRmiSer-
ver interface is provided with the Active-RMI system and can be started by a user
that host machine as a user level service. This process needs to be registered 
Java RMI rmiregistry service under the name: “aRmiServer”. Once the registry name
binding is established clients can lookup and locate the Active-RMI server object:

aRmiServer rServer=(aRmiServer)Naming. lookup (
    "//hostname/aRmiServer");

After the remote Active-RMI server reference, rServer,  is obtained, it can be used t
create active objects on the remote server by using the aRmiServer  object’s exported
interface’s createRemoteObject method which takes the name of a class imp
menting the remote active interface as a parameter used to create the remote
objects on the server:

ActObj obj = (ActObj)rServer. createRemoteObject (
"ActObj_Impl");

or

 ActObj obj=(ActObj)rServer. createRemoteObject (
    "ActObj_Impl",new ClassExporter_Impl());

The latter form is typically used transparently by the stub implementation of
aRmiServer object, when the former form typically used by the client programm
raises a remote exception due to classes  not being found on the remote server 

The createRemoteObject returns a stub handle as a a remote-reference to
newly created object on the remote server. Calling the public methods of this obj
specified in  interface ActObj is transparently carried out as an asynchronous rem
method call.
696969



d to a
ethod
f the
 by

o
sult of
l-
ion

t a
 some

th
is is

mitive
d sub-

te

h
esults
4.4.3    Asynchronous Remote Method Calls And Call Handles

Methods of active remote objects are always called asynchronously, i.e. the call
returns to the client immediately  with a pseudo result,  which can be converte
call handle. A unique call-handle is associated with each asynchronous remote m
invocation. The client can instantiate the call handle through the constructor o
proper CallHandle  subclass, passing as argument the temporary result returned
the remote call -- the exception is a  Void_CallHandle , whose constructor takes n
arguments. The call-handle can be used to  either do a blocking wait on the re
the remote computation, via getResult , or do non-blocking query of result’s avai
ability, via resultReady .  In the example code snipet below, the client’s invocat
of the method, foo () of the active remote object, obj , returns a  result whose type is
the same type that is declared in obj  ‘s remote interface. The type of the result tha
remote method returns can be  any of the primitive Java language types or
Object  type which implements the serializable  interface. In the following exam-
ple:

Bar t  = obj.foo(arg1,arg2);
Object_CallHandle th = new Object_CallHandle (t);

obj’s  foo()  method is invoked with two actual arguments, arg1  and arg2 , and
returns immediately with a temporary unique value, t,  of type Bar . This value is sub-
sequently used to obtain a call handle, th ,  of type  Object_CallHandle . The
waitFinished () method of CallHandle  class can be used for  synchronizing wi
the completion of the remote computation without actually collecting the result, th
the only way for synchronizing with a void return type remote method.

Since Java primitive types are not derived from Object  class, the getResult
method cannot be written as a generic method returning a generic object  or pri
type. Therefore, actual call-handles need to be created as one of the specialize
classes of CallHandle , such as an Integer_CallHandle  for int  result type calls,
or Object_CallHandle  for remote calls returning an Object  or array type, etc.
Active-RMI also defines and uses a call registry abstraction to transparently genera
and manage the call-handles.

4.4.4    Call Registry And Synchronization With Remote Host

Active-RMI system transparently  maintains a call-registry object associated with eac
client. The call registry is used by the client stubs to create unique temporary r
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and to register the call details and the associated remote reference layer state in
tion. This registry information is used when the constructor of a CallHandle  class is
called to associate the remote asynchronous call with a call-handle for future 
delivery. Using a call handle obtained from the call-registry the client can either
blocking wait, using the getResult method of the CallHandle  class, and wait for
the result’s arrival from the remote server; or do a non-blocking  query, using
resultReady   method which immediately returns true or false depending on whe
the result is ready. In the following example:

int result = ih. getResult ();

the client waits for the remote computation to finish and ship back the result o
computation  associated with the Integer_CallHandle , ih , and the received value
is assigned to result. For primitive type results no casting is necessary since th
handle already holds the type information. For remote methods returning arb
object-types, however, the value returned needs to be cast to the right type. In th
segment below, the Object_CallHandle,  oh,  is being used to synchronize wit
a remote call  returning a T type object:

T resObj =  (T) oh. getResult ();  

4.5    Stub and Skeleton Classes

Active-RMI uses stub classes on the client side for marshalling and registry o
remote calls and skeleton classes on the remote server host for request dispatch
scheduling. The interface approach and stub/skeleton naming conventions are 
cal to the standard Java RMI calls. The construction and use of Active-RMI stub
skeleton classes is also similar to that of standard Java RMI stubs. 

4.5.1    Client side Stub Classes

When a client calls a method of an active remote object the actual method t
invoked is the corresponding stub class method. The stub object acts as a proxy imp
menting the remote object’s interface by marshalling each call into a request pa
and delivering it to the remote object on the server side. This process is very sim
the standard Java RMI system and the current implementation is built as an ext
to the RMI remote reference layer. Unlike RMI, however, Active-RMI stubs return
back immediately to the caller a unique temporary result after implicitly registe
717171
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the call-details with a local client-side registry, without waiting for the actual resu
the computation from the remote host. It is the client’s responsibility to keep tra
the remote call status and result using a call handle for each remote invocation.
obtains the call handle from the registry using the unique temporary returned b
stub method. The actual result for a remote call gets delivered asynchronously 
remote active object and is ultimately returned to the client application when the
handle’s getResult  method is invoked.

4.5.2    Server Side Skeleton Classes

Skeleton Classes for active remote objects also work similar to their Java RMI co
terparts. Skeleton classes are uploaded to the server by the aRmiClassLoader  possi-
bly through the use of a ClassExporter  object at the time  the first remote object 
created. When a client invokes a method of a remote object, the correspondin
method is called by the RMI Java runtime, which in turn marshals the call param
and dispatches the call to the corresponding skeleton object on the remote se
Active-RMI skeleton classes’ dispatch  implementation, unlike its RMI counterpar
does not immediately serve the request but instead converts the call parameters
aRmi_Request  object and delivers it to the active object’s  RequestQueue .  Active
object’s scheduler  is responsible for the final call completion and the asynch
nous delivery of the result back to the client by invoking the serve  method of the
request object.

4.5.3    Stub and Skeleton Class Examples

In this section we present stub, skeleton and implementation classes implement
simple Hello interface:

public  interface  Hello 

extends  java.rmi.Remote 

{

    public String  sayHello(int id) 

throws  java.rmi.RemoteException;

}
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import  activeRmi.*;

public final class HelloImpl_Stub
    extends java.rmi.server.RemoteStub
    implements Hello, java.rmi.Remote
{
    private static java.rmi.server.Operation[] operations = {
        new java.rmi.server.Operation(

"java.lang.String sayHello(int)")
    };
private static final long interfaceHash = 

-5352162705594599214L;
    
public HelloImpl_Stub() {  super();   }
public HelloImpl_Stub(java.rmi.server.RemoteRef rep)

{super(rep);}
// Methods from remote interfaces    

    // Implementation of sayHello
public java.lang.String sayHello(int $_int_1) throws

 java.rmi.RemoteException {
        int opnum = 0;
        java.rmi.server.RemoteRef sub = ref;
        java.rmi.server.RemoteCall call = 

 sub.newCall((java.rmi.server.RemoteObject)this,
 operations, opnum, interfaceHash);

        try {
            java.io.ObjectOutput out = call.getOutputStream();
            out.writeInt($_int_1);
        } catch (java.io.IOException ex) {
            throw new java.rmi.MarshalException(

"Error marshaling args", ex);
        };
        try { sub.invoke(call);
        } catch (java.rmi.RemoteException ex) {
            throw ex;
        } catch (java.lang.Exception ex) {
          throw new java.rmi.UnexpectedException(

"Unexpected exception", ex);
        };

java.lang.String callID = new java.lang.String();
FutureRegistry.registerCall(callID, call, ref);
return callID;

    }
}

Figure 4.4: Active-RMI Hello Implementation Stub Class
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public final class HelloImpl_Skel
    extends java.lang.Object
    implements java.rmi.server.Skeleton,
    Dispatcher, Runnable
{
    private static java.rmi.server.Operation[] operations = {
        new java.rmi.server.Operation(

"java.lang.String sayHello(int)")
    };
    
    private static final long interfaceHash = -
5352162705594599214L;
    
    public java.rmi.server.Operation[] getOperations() { 
        return operations;
    }
    public aRmi_RequestQueue  RequestQueue;
    public HelloImpl server;
    
    public void dispatch(java.rmi.Remote obj, 

java.rmi.server.RemoteCall call, int opnum, long hash) 
throws java.rmi.RemoteException, Exception {

if (hash != interfaceHash)
            throw new java.rmi.server.SkeletonMismatchException(
                                      "Hash mismatch");
        server = (HelloImpl)obj;
        
        java.io.ObjectOutput out;
        RequestQueue = server.RequestQueue;
        if (activeThread == null) {
            activeThread = new Thread ( (Runnable)this );
            activeThread.start();
        }

        switch (opnum) {
        case 0: { // sayHello
            int $_int_1;
            try {
                java.io.ObjectInput in = call.getInputStream();
                $_int_1 = in.readInt();
            } catch (java.io.IOException ex) {
                throw new java.rmi.UnmarshalException(

"Error unmarshaling arguments", ex);
            } finally {
                call.releaseInputStream();
            };
74



    
try {
       out = call.getResultStream(true);
} catch (java.io.IOException ex) {
      throw new java.rmi.MarshalException(

"Error marshaling return", ex);
};
    
Object args[] = new Object[1];
args[0] = new java.lang.Integer($_int_1);
Thread thisThread = Thread.currentThread();
server.RequestQueue.push( new aRmi_Request(this, server,

call, thisThread , opnum, args));

activeThread.resume();
thisThread.suspend();

/* 
 * suspended thread resumes here to finish computation
 */
java.lang.String $result = server.sayHello($_int_1);

try {
 out.writeObject($result);
} catch (java.io.IOException ex) {
 throw new java.rmi.MarshalException(

"Error marshaling return", ex);
};

break; // thread will break free from here.
}

        default:
            throw new java.rmi.RemoteException(

"Method number out of range");
}

 }

 public void run() {
       try {
           defaultScheduler();
       } catch (java.rmi.RemoteException ex) {

       } catch (Exception ex) {}
 }

 public  void defaultScheduler()
throws java.rmi.RemoteException, Exception

 {          
     while(true) {
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while (!RequestQueue.empty()) {
               aRmi_Request currentRequest =

 RequestQueue.getFirstRequest();
currentRequest.serve();
RequestQueue.removeRequest(currentRequest);

}

Thread.yield();
waitForRequest(1000L); // block till next 

requestdispatched
Thread.yield();

        }
    }  

    public void waitForRequest(long ms) {

       Thread.currentThread().suspend();
    }
    
    public boolean debug = false;

    private boolean started = false; // set to true when
 // activeThread starts

    private Thread activeThread = null;
}

Figure 4.5: Active-RMI Hello Implementation Skeleton Class
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import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import activeRmi.*; 

public class HelloImpl
extends UnicastActiveRemoteObject
implements Hello

{   
    private String name;
    
    public activeRmi.aRmi_RequestQueue  RequestQueue; 
    public HelloImpl() 

throws java.rmi.RemoteException, Exception 
{

RequestQueue = new activeRmi.aRmi_RequestQueue();
    }
    
    public String sayHello(int id) throws RemoteException 

{
return  "Hello aRmi World! <id=" + id + ">";

    }
}

Figure 4.6: Active-RMI Hello Implementation Class

4.6    Exceptions

Exceptions that may be thrown as a result of a remote method invocation are p
through the RMI layer and can be caught in the client with the usual Java synta
semantics. Remote exceptions as specified by Java RMI are handled in the sam
ion in Active-RMI.

4.7    Server Abstractions and Functions

4.7.1    Starting Active-RMI server

A special Active-RMI server process, implementing the aRmiServer  interface needs
to be running on a server host in order for a client application to be able to remot
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ate active-RMI objects on that host. A new active remote object can be  created 
remote host via createRemoteObject  method which returns a remote stub refe
ence to the newly created active object. Without the Active-RMI server process run-
ning, a local object can still create active objects on its own host and export th
clients possibly residing on different hosts, but clients on remote machines will n
able to directly connect to this host and create active remote objects on it. The Active-
RMI server process is registered using standard RMI registry mechanism usin
name “aRmiServer".  Client applications can locate and obtain remote object re
ences to the server by java.rmi.Naming   utility:

aRmiServer rHost = (aRmiServer)java.rmi.Naming. lookup (
//hostName/aRmiServer");

Active-RMI class libraries contains a class called ARrmiServer_Impl  which imple-
ments  the aRrmiServer  interface. This class can be used to instantiate an Active-
RMI server object as part of an application. Alternatively, a command-level ut
aRrmiServer is provided and can be started independently as a standalone da
process or user level application.

4.7.2    Active-RMI Server And Remote Object Creation

The primary function of the Active-RMI server object implementing the aRmiServer
interface is to facilitate remote object creation. It provides the method, createRemo-
teObject  to be used by clients to spawn new active remote objects. Invoking
createRemoteObject  method of an aRmiServer object results in the creation of 
new object on that server host. An ActiveRemote  object reference, a subtype o
java.rmi.Remote , is returned to the client. The returned reference acts as a pro
the actual remote object: client’s invocation of the proxy’s methods are handle
asynchronous Active-RMI requests, executed on the remote host. The createRemo-
teObject method can be invoked with a single string argument, which   contain
implementation class path of the active remote object implementation: 

Hello obj= (Hello) rHost. createRemoteObject (
 "aRmiExamples.HelloImpl");

  or with an additional  ClassExporter   argument,

Hello obj= (Hello) rHost. createRemoteObject (
   "aRmiExamples.HelloImpl",new ClassExporter_Impl());
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The latter form is typically used transparently by the stub implementation of
Active-RMI Server object. If the server cannot find some of the classes locally
throws an exception forcing the client’s stub to pass a ClassExporter  object. When
the client responds by passing a class exporter object, a new class loader, aRmi-
ClassLoader,  is  created and installed transparently by the server utilizing 
remote class exporter object received from the client to download required clien
classes and create the active object on the server. In order to facilitate the ne
installing a new class loader as required by Active-RMI remote object creation proto
col, the aRmiServer process uses  Active-RMI’s security manager, aRmiSecurity-
Manager ,  which allows   installing new class loaders. Finally, the aRmiServer
process handling the createRemoteObject  request creates the active obje
requested by the client, exports it using the RMI remote reference layer and ret
stub reference to the client. Figure 4.2 depicts a typical object creation scenario.

4.7.3    Active Object Semantics

We use the term active object to describe an object which has an independent thre
has access to a request queue of incoming method invocation requests; and 
ability to inspect, select and serve any of the requests in its request queue. The Active-
RMI system extends the Java object model by giving active objects autonomy
how and when to respond to their clients’ requests. Active objects are created
Active-RMI  UnicastActiveRemoteObject   class which uses the RMI remote re
erence layer, the communication subsystem,  and provides the Active-RMI  request
queue and a default (FIFO) scheduler . The Active-RMI server, creates each activ
object with a  request queue  and  a dedicated thread and then returns to the clie
remote-stub reference. The active object’s thread begins execution in its scheduler
method. 

In Active-RMI active object model, each request to the active remote object is d
ered as an aRmi_Request  message object into the target object’s private requ
pool. There are no service guarantees, or an implicit order in which  the arrived
sages will be served. The active object inherits the RequestQueue  constructed by the
Active-RMI protocol as a private instance variable, and uses the thread execut
scheduler  to decide how to process requests placed into the queue. The scheduler
method, however, is not restricted to only  implementing scheduling activities  a
can perform general purpose, agent-like computation. The active object’s schedulin
thread can access the RequestQueue  directly and peek into the queue o
aRmi_Requests , and implement a selection policy to choose and serve one o
requests in the queue. The scheduling policy can involve inspecting each req
type, or its method signature,  or the values of its actual arguments. The sch
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thread may also decide not to serve any of the current requests in the queue; 
wait until a certain event takes place, or a certain request arrives. A simple sched-
uler code, enforcing a last-in-first-out (LIFO) style servicing of its request queu
shown below:

private  void   scheduler()

throws  java.rmi.RemoteException,Exception

{ 

while(true) {

  while  ( ! RequestQueue.empty()) {

 aRmi_Request currentRequest =

  RequestQueue. getLastRequest ();

  currentRequest. serve ();

  }

RequestQueue. waitForRequest (); // blocking  call

}

 }

4.7.4    Active-RMI Scheduler and Request Queue

Each request to an active objects gets queued in its RequestQueue  as an
aRmi_Request  object which represents the client’s remote method invocation in
form of a message containing the type and signature of the method and  the ser
arguments list, args , in the form of an Object  array. While executing inside the
scheduler  method, the active object can examine its RequestQueue  by  peeking
into the  request  objects  and possibly  select one based on the signature
requested method, or the contents of its actual parameters  and finally serve the 
by invoking the request object’s serve  method. To access the signature and then 
k-th parameter of the earliest call in the request queue following code segment c
used: 

aRmi_Request aRequest = RequestQueue. getFirst ();

String sig = aRequest. getMethodSignature ();

Object argK = aRequest. args [k-1];  
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The actual parameters  of the call are available in the public Object[]  component,
args . All primitive-type arguments are stored as objects using  th
java.lang. primitive wrapper classes, and can obtained by unwrapping from
object format. The signature stored in the request can be used to enforce type ch
when unbundling the parameters. The RequestQueue   supports the  standard
java.util.Enumeration  interface to iterate over its elements as well  as provid
several convenience functions, for example:

aRequest = RequestQueue. getFirst ();

aRequest = RequestQueue. getFirst (“foo”);

aRequest = RequestQueue. getFirst (“foo(int)”);

the no-arg version of getFirst()  method dequeues and returns the first reques
RequestQueue . The  getFirst(“foo”)  call scans and returns the first request
RequestQueue  whose target method’s name is “foo ”. The third variant returns the
first request in the queue whose signature matches “foo(int)”. If there are no pe
requests or no match is found a  null value is returned. The  getLast()  method is
provided with a similar semantics except that the RequestQueue  is scanned in
reverse order. Other variants for queue access, peekFirst and peekLast  methods,
return a request object without dequeueing. Further synchronization methods p
waiting behavior which block until a particular request type arrives into the Request-
Queue:

waitForRequest (); // any request

waitForRequest (“foo”);// any foo request

waitForRequest (“foo(int)”);// any foo(int) request.

4.7.5    Request Handling And Synchronization Support

Each Active-RMI request object is associated with a thread which has been susp
just before it began to execute  the target method with the passed arguments. 
decision is made to serve the request, the thread can be resumed by:

thisRequest. serve (); 

which executes the target  method of the current active object with the actual 
ments, and then asynchronously sends the request back to the client whic
invoked the remote method. 
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4.8    Implementation and Performance Issues

The latest Active-RMI system uses the standard Java RMI remote reference laye
transport layer. The prototype implementation is written entirely in pure Java an
been tested using Sun Microsystem’s Java Developers Kit, JDK 1.1 and 1.2 re
on machines running various Windows and Solaris O/S flavors. The dependen
standard RMI support has the following implications: synchronous Active-R
remote calls are at best only as efficient as standard RMI calls; performance and
bility of Active-RMI protocol will always benefit from enhancements and deploym
of Sun’s Java RMI infrastructure. Our key performance objective is to incur negligi
run-time overhead for Active-RMI calls in excess of the standard RMI runtime over-
head. We discuss how we attain our objectives by briefly outlining the Active-RMI
activities on the client and the server.

On the client side the the only additional overhead is due to creation of a uniqu
identifier (standard object creation) and its registration with the call registry (hash
insertion and lookup). Communication layer and marshalling costs within the 
methods are identical to standard RMI calls. Client side thread creation overhead
minimized by a demand based scheme: a new client side thread is created only 
getResult operation blocks because the remote result is not ready. Further optimiz
is possible (though not implemented in current implementation) by using sh
thread pools and management techniques. 

Server side Active-RMI overhead is primarily due to the creation of request objects
and the related queue management overhead inside the scheduler method. The only
thread created by the Active-RMI system is at setup time, during the creation of 
active object scheduler thread. Standard RMI runtime already creates a dedicated I
thread for dispatching remote request messages to their target object’s skeleton
ods, so no new additional thread creation is performed by Active-RMI. The skeleton
method simply suspends the current dispatch thread after enqueueing the reques
request queue. The scheduler serves a request simply by resuming the suspended RMI
dispatch thread.

4.9    Summary

We have introduced Active Remote Method Invocation system, Active-RMI, as a set
of class libraries, tools, and a design method for building distributed applications 
an active remote object abstraction in Java. Active-RMI provides a very high level of
programming for writing complex object distribution and synchronization applicat
82



ation
arent
 and

of
echa-
ility
er
ling by
y pro-

un-
eduling
ich is
s for

lps
s and
zation
also

tly a
desir-

r
 the

 cor-
 to gain
entirely in Java. Three key abstractions provided by the Active-RMI model are: the
active remote objects with user level scheduling; asynchronous method invoc
with data-driven, non-blocking synchronization using call-handles; and transp
remote object creation. The first two abstractions allow us to support both reply
request scheduling. Reply scheduling is the control the client has over the delivery 
reply/result, which we address by the asynchronous remote method invocation m
nism and by providing both blocking and non-blocking result handling capab
using call-handles. Request scheduling is the control the active object server has ov
the acceptance and serving of incoming requests. We support request schedu
delivering the requests to an active server object’s private request queue, and b
viding a scheduler  method abstraction for coding active object behavior with r
time support to access its own request queue and to make autonomous sch
decisions. Our approach provides a mechanism for dealing with local delays, wh
deemed essential in Liskov et al.’s[46] formulation of concurrency requirement
developing client/server type distributed programs.

Having a designated scheduler  method with run-time request queue access he
coding complex synchronization specifications externally to the object’s method
thus helps enhance maintainability and reusability. The separation of synchroni
and functional specifications is not only useful for reducing complexity but 
allows our model to easily program agent-like active objects.

An important area of further study for us is the security modeling. We have curren
rather strict security mechanism based on the RMI security model, however, it is 
able to have less rigid authorization and security abstractions. 

Performance is a critical mission of the Active-RMI system development, and ou
implementation and design approach incurs minimal cost on top of underlying
Java RMI system overhead. 

An  issue that needs further investigation is identifying the synchronization and
rectness needs in the presence of multi-threaded schedulers. We are attempting
more insight by building systems based on Active-RMI and comparing with alternative
approaches.
83



84



ified
 any

n-

with a
irtual

ns

es on-

cts to
corpo-
es of
yntax;
Chapter 5

jContractor: A Reflective Java Library
for Design by Contract

5.1    Introduction

In this Chapter we discuss the design and implementation of jContractor, a purely
library-based system and a set of naming conventions to support Design By Contract
in Java. The jContractor system does not require any special tools such as mod
compilers, runtime systems, modified JVMs, or pre-processors, and works with
pure Java implementation. Therefore, a programmer can practice Design By Contract
by using the jContractor library and by following a simple and intuitive set of conve
tions.

Each class and interface in a Java program corresponds to a translation unit 
machine and platform independent representation as specified by the Java V
Machine (JVM) class  file  format [45]. Each class file contains  JVM instructio
(bytecodes) and a rich set of meta-level information. jContractor  utilizes the meta-level
information encoded in the standard Java class files to instrument the bytecod
the-fly during class loading. During the instrumentation process jContractor parses each
Java class file  and discovers the jContractor contract information by  analyzing the
class meta-data. 

The jContractor design addresses three key issues which arise when adding contra
Java: how to express preconditions, postconditions and class invariants and in
rate them into a standard Java class definition; how to reference entry valu
attributes, to check method results inside postconditions using standard Java s
and how to check and enforce contracts at runtime.
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A discussion of key Design By Contract abstractions is introduced in Chapter 2
tion titled “Design by Contract Abstractions” on page 30. In this chapter we first 
a brief overview of jContractor's approach and in the subsequent sections discuss d
and implementation details. 

5.2    jContactor Overview

jContractor provides an intuitive set of high-level programming abstractions to de
and perform runtime checking of Design by Contract specifications. 

• Programmers add contract code to a class in the form of methods followingjCon-
tractor's naming conventions: contract patterns. The jContractor  class loader rec-
ognizes these patterns and rewrites the code to reflect the presence of cont

• Contract patterns can be inserted either directly into the class or they can be
ten separately as a contract class where the contract class' name is derived fro
the target class using jContractor naming conventions. The separate contract cl
approach can also be used to specify contracts for interfaces.

• The jContractor library instruments the classes that contain contract patterns on
the fly during class loading or object instantiation. Programmers enable the
time enforcement of contracts either by engaging the jContractor class loader or
by explicitly instantiating  objects from the jContractor object factory. Program-
mers can use exactly the same syntax for invoking methods and passing 
references regardless of whether contracts are present or not.

• jContractor uses an intuitive naming convention for adding preconditions, post-
conditions, class invariants, recovery and exception handling in the form of pro-

tected  methods. Contract code is hence distinguished from the functional c
The name and signature of each contract method determines the actual m
with which the contract is associated.

• Postconditions and exception handlers can access the old value of any attribute
by using  a special object reference, OLD. For example OLD.count   returns the
value of the attribute count  just prior to the execution of the method. jContractor
emulates this behavior by transparently rewriting class methods during 
loading so that the entry values of OLD references are saved and then made av
able to the postcondition and exception handling code. 

• jContractor  provides a class, RESULT, and a static method, Compare.
Inside a method's postcondition RESULT.Compare( <expression>) returns true or
false by comparing the value of the <expression>  to the current result.
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5.3    jContractor  Library and Contract Patterns

jContractor is a purely library-based approach to support Design By Contract const
using standard Java. Table 2.4, “Overview of jContractor Design By Con
Abstractions,” on page 34 contains a brief summary of key jContractor constructs and
patterns. 

A programmer writes a contract by taking a class or method name, say put , then
appending a suffix depending on the type of constraint, say _PreCondition , to write
the  put_PreCondition. Then the programmer writes the method body describ
the precondition. The method can access both the arguments of the put  method with
the identical signature, and the attributes of the class. When jContractor instrumentation
is engaged at runtime, the precondition gets checked each time the  put  method is
called, and the call throws an exception if the precondition fails.

The code fragment in Figure 5.1 shows a jContractor based implementation of the put
method for the Dictionary  class.  An alternative approach is to provide a sepa
contract class, Dictionary_CONTRACT , as shown in Figure 1-b, which contains th
contract code using the same naming conventions. The contract class can (opti
extend the target class for which the contracts are being written, which is the c
our example. For every class or interface X that the jContractor ClassLoader loads, it
also looks for a separate contract class, X_CONTRACT, and uses contract specification
from both X and X_CONTRACT (if present) when performing its instrumentation. T
details of  the class loading and instrumentation will be presented in subsequen
tions.
878787



Figure 5.1: Dictionary Class Implementing Contract for put  Method

class Dictionary... {
protected Dictionary OLD;
Object put (object x, String key)
{

putBody();
}
protected boolean put_PreCondition (object x, String key)
{

return( (count <= capacity)
&& !(key.length() == 0));

}
protected boolean put_PostCondition  (object x, String key)
{

return( (has(x)) 
&& (item(key)== x) 
&& (count == OLD.count +1 ))

}
protected boolean Object put_OnException (Exception e)

throws Exception
{

count = OLD.count;
throw e; //rethrow exception.

}
protected boolean Dictionary_ClassInvariant ()
{

return(count >= 0);
}

}
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Figure 5.2: Separate Contract Class for Dictionary

5.3.1    Runtime Contract Monitoring

In order to enforce contract specifications at run-time, the contractor object mu
instantiated from an instrumented class. This can be accomplished in two po
ways: (1) by using the jContractor class loader which instruments all classes containin
contracts during class loading; (2) by using a factory style instantiation using thejCon-
tractor library. 

The simplest and the preferred method is to use the jContractor class loader, since this
requires no changes to a client’s code. The following code segment shows how a
declares, instantiates, and then uses a Dictionary  object, dict . The client’s code
remains unchanged whether jContractor runtime instrumentation is used or not:

Dictionary  dict;   // Dictionary (Figure-5.1) defines contracts.

dict = new Dictionary();   // instantiates dict from instrumented or 
   // non- instrumented  class depending on 
   // jContractor class-loader being engaged.

dict.put(obj1,“name1”);     // If jContractor is enabled, put-contracts 
   // are enforced,  i.e. contract  violations 
   // result in an exception being thrown.

The second approach uses the jContractor object factory, by invoking its New  method.
The factory instantiation can be used when the client’s application must use a c
(or third party) class loader and cannot use jContractor class loader. This approach also

Class Dictionary_CONTRACT extends Dictionary...
{

protected boolean put_PostCondition (Object x, String key)
{

return ((has(x)) && (item(key)==x) && (count== OLD.count+1)
}
protected boolean Dictionary_ClassInvariant (){ 

return(count >= 0);
}

}
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gives more explicit control to the client over when and which objects to instrument.
Following code segment shows the client’s code using the jContractor factory to instan-
tiate an instrumented  Dictionary  object, dict :

dict = (Dictionary) jContractor. New(“Dictionary”);
// instruments  Dictionary

dict.put(obj1,“name1”);    // put-contracts are enforced

Syntactically, any class containing jContractor design-pattern constructs is still a pu
Java class. From a client’s perspective, both instrumented and non-instrum
instantiations are still Dictionary objects and they can be used interchangeably,
they both provide the same interface and functionality. The only semantic differ
in their behavior is that the execution of instrumented methods results in evalu
the contract assertions, (e.g., put_PreCondition ) and throwing a Java runtime
exception  if the assertion fails. 

Java allows method overloading. jContractor supports this feature by associating ea
method variant with the pre- and postcondition functions with the matching argu
signatures. 

For any method, say foo , of class X, if there is no boolean  method by the name
foo_PreCondition  with the same argument signature, in either X, X_CONTRACT or
one of their descendants then the default precondition for the foo  method is “true”.
The  same “default” rule applies to the postconditions and class invariants.

5.3.2    Naming Conventions for Preconditions, Postconditions and Class Invari
ants

The following naming conventions constitute the jContractor patterns for pre- and post
conditions and class invariants:

Precondition:  protected boolean    methodName  + _PreCondition   + ( <arg-list>)
Postcondition:  protected boolean    methodName  + _PostCondition + ( < arg-list >)
ClassInvariant:  protected boolean    className      + _ClassInvariant ( )

Each construct’s method body evaluates a boolean  result and may contain reference
to the  object’s internal state with the same scope and access rules as the o
method. Pre- and postcondition methods can also use the original method’s f
90
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arguments in expressions. Additionally, postcondition expressions can refer to th
values of object’s attributes by declaring a pseudo object, OLD, with the same class
type and using the OLD object to access the values.

5.3.3    Exception Handling

The postcondition for a method describes the contractual obligations of the cont
object only when the method terminates successfully. When a method term
abnormally due to some exception, it is not required for the contractor to ensur
the postcondition holds. It is very desirable, however, for the contracting (supp
objects to be able to specify what conditions must still hold true in these situation
to get a chance to restore the state to reflect this. 

jContractor supports the specification of general or specialized exception handling
for methods. The instrumented method contains wrapper code to catch exce
thrown inside the original method body. If the contracts include an exception-ha
method for the type of exception caught by the wrapper, the exception handler
gets executed. 

If exception handlers are defined for a particular method, each exception handle
either re-throw  the handled exception or compute and return a valid result. 
exception is re-thrown no further evaluation of the postconditions or class-invaria
carried out. If the handler is able to recover by generating a new result, the post
tion and class-invariant checks are performed before the result is returned, as
method had terminated successfully. 

The exception handler method’s name is obtained by appending the s
“_OnException”, to the method’s name. The method takes a single argument w
type belongs to either one of the exceptions that may be thrown by the or
method, or to a more general exception class. The body of the exception handl
include arbitrary Java statements and refer to the object’s internal state using the
scope and access rules as the original method itself. The jContractor approach is more
flexible than the Eiffel’s “rescue” mechanism because separate handlers can be 
ten for different types of exceptions and more information can be made availa
the handler code using the exception object which is passed to the handler meth
919191
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5.3.4    Supporting Old Values and Recovery

jContractor uses a clean and safe instrumentation “trick” to mimic the Eiffel keywo
old, and support Design By Contract style postcondition expressions in which on
refer to the “old” state of the object just prior to the method’s invocation. The tr
involves using the "syntax notation/convention",  OLD. x    to mean the value that x ha
when method body was entered. Same notation is also used for method referen
well, e.g., OLD.foo()   is used to refer to the result of calling the member foo()
when entering the method. We will later explain how the jContractor  instrumentation
process  rewrites expressions involving OLD to achieve the desired effect. First w
illustrate its usage from the example in Figure 1.  The class Dictionary first dec
OLD:

private Dictionary OLD ;

Then, in the postcondition of the put  method taking <Object x, String key>
arguments,  the following subexpression is used

(count == OLD . count + 1)

to specify that the execution of the corresponding put method increases the va
the object's count  by 1. Here OLD. count refers to the value of count  at the point
just before the put -method began to execute. 

jContractor implements this behavior using the following instrumentation logic. Wh
loading the Dictionary class, jContractor scans the postconditions and exception ha
dlers for OLD usage. So, when it sees the OLD.count  in put_PostCondition  it
inserts code to the beginning of the put  method to allocate a unique temporary and
save count to this temporary. Then it rewrites the expression in the postcon
replacing the OLD.value  subexpression with an access to the temporary. In summ
the value of the expression OLD.expr  (where expr  is an arbitrary sequence of field
dereferences or method calls) is simply the value of expr  on entry to the method.

It is also possible for an exception handler or postcondition method to revert the
of attr  to its old value by using the OLD construct. This may be used as a basic rec
ery mechanism to restore the state of the object when an invariant or postcondi
found to be violated within an exception-handler. For example,

attr = OLD.attr;

or
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attr = OLD.attr.Clone();

The first example restores the object reference for attr  to be restored, and the secon
example restores the object state for attr  (by cloning the object when entering th
method, and then attaching the object reference to the cloned copy.)

5.3.5    Separate Contract Classes

jContractor allows contract specifications for a particular class to be externally 
vided as a separate class, adhering to certain naming conventions. For exampl
sider a class, X, which may or may not contain jContractor contract specifications.
jContractor will associate the class name, X_CONTRACT,  with the class X, as a potential
place to find contract specifications for X. X_CONTRACT must extend class X and use
the same naming conventions and notations developed earlier in this paper to s
pre- and postconditions, exception handlers or class invariants for the methods in
X. 

If the implementation class X also specifies a precondition for the same method, 
precondition is logical-AND’ed with the one in X_CONTRACT during instrumentation.
Similarly,  postconditions, and class invariants  are also combined using logical-AND.
Exception handlers in the contract class override the ones inherited from X.

The ability to write separate contract classes is useful when specifying contrac
legacy or third party classes, and when modifying existing source code is not po
or viable. It can be used as a technique for debugging and testing system or third
libraries.

5.3.6    Contract Specifications for Interfaces

Separate contract classes also allow contracts to be added to interfaces. For e
consider the interface  IX  and the class C which implements this interface. Th
class IX_CONTRACT contains the pre- and postconditions for the methods in IX . Meth-
ods defined in the contract class are used to instrument the class “implementin
interface.

interface IX  
{ 

int foo (<args>);
939393
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class IX_CONTRACT  
{

protected boolean foo_PreCondition (<args>) { ... }
protected boolean foo_PostCondition (<args>){ ... }

}

Contracts for interface classes can only include pre- and postconditions, and ca
express constraints using expressions involving the method's arguments or int
method calls, without any references to a particular object state. If the implemen
class also specifies a precondition for the same method, the conditions are logical-
AND’ed during instrumentation.  Similarly,  postconditions are also combined u
logical-AND.

5.4    Design and Implementation of  jContractor  

The jContractor package uses Java Reflection to detect Design By Contract pattern
during object instantiation or class loading. Classes containing contract pattern
instrumented on the fly using the jContractor library. We begin by explaining how
instrumentation of a class is done using the two different mechanisms explain
section 2.1. The rest of this section explains the details of the instrumentation
rithm. 

The primary instrumentation technique uses the jContractor class loader to transpar-
ently instrument classes during class loading. The scenario depicted in Figu
illustrates how the jContractor Class Loader obtains instrumented  class bytecodes fro
the jContractor instrumentor while loading class Foo. The jContractor class loader  is
engaged when launching the Java application. The instrumentor is passed the n
the class by the class loader and in return it searches the compiled class, Foo, for jCon-
tractor contract patterns. If the class contains contract methods, the instrumentor 
a copy of the class bytecodes, modifying the public methods with wrapper co
check contract violations, and returns the modified bytecodes to the class loade
erwise, it returns the original class without any modification. The object instant
from the instrumented class is shown as the Foo<Instrumented > object in the dia-
gram, to highlight the fact that it is instrumented, but syntactically it is a Foo object. 
94



li-
s off
ublic
ntime
 code

instru-
 client
ted

e fac-

a
the
in
Figure 5.3: jContractor Class Loader based Instrumentation

If the command line argument for jContractor is not present when starting up the app
cation, the user’s own (or the default) class loader is used, which effectively turn
the jContractor instrumentation. Since contract methods are separate from the p
methods, the program’s behavior remains exactly the same except for the ru
checking of contract violations. This is the preferred technique since the client’s
is essentially unchanged and all that the supplier has to do is to add the jContractor con-
tract methods to the class.

The alternative technique is a factory style object instantiation using the jContractor
library’s New method. New takes a class name as argument and returns an 
mented object conforming to the type of requested class. Using this approach the
explicitly instructs jContractor to instrument a class and return an instrumen
instance. The factory approach does not require engaging the jContractor class loader
and is safe to use with any pure-Java class loader. The example in illustrates th
tory style instrumentation and instantiation using the class Foo. The client invokes
jContractor.New() with the name of the class, “Foo”. The New method uses the jCon-
tractor Instrumentor to create a subclass of Foo, with the name, Foo_Contractor
which now contains the instrumented version of Foo. New instantiates and returns 
Foo_Contractor  object to the client. When the client invokes methods of 
returned object as a Foo object, it calls the instrumented methods 
Foo_Contractor  due to the polymorphic assignment and dynamic binding.

 // Client code

  Foo  f;
  . . .

  f = new  Foo( );
   . . .
  // f is instrumented
  T res = f.m( );

 jContractor
ClassLoader

class Foo_CONTRACT
{   …
   T   m( )   { …}

    protected boolean
    m_PreCondition( )    {…}
…m_PostCondition( )   {…}

…Foo_ClassInvariant( ) {…}
}

class Foo
   // Instrumented version
{    …
   T  m( )   {
        // additional checks
        // for pre, post cond’s
        // and invariants
    }
}

  jContractor
  Instrumentor

Foo

“Foo”

Foo<instrumented>

Byte codes

class Foo
{   …
   T   m( )   { …}

    protected boolean
    m_PreCondition( )    {…}
…m_PostCondition( )   {…}

…Foo_ClassInvariant( ) {…}
}

Foo<instrumented>
        object
959595
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Figure 5.4: jContractor Factory Style Instrumentation and Instantiation

The remainder of this section contains details of the instrumentation algorithm
individual jContractor constructs.

5.4.1    Method Instrumentation

jContractor instruments contractor objects using a simple code rewriting technique
ure 5.5 illustrates the high-level view of how to map code segments from original 
methods into the target instrumented version. jContractor's key instrumentation policy is
to inline the contract code for each method within the target method's body, to 
any extra function call. Two basic transformations are applied to the original met
body. First, return  statements are replaced by an assignment statement – storin
result in a method-scoped temporary – followed by a labeled break , to exit out of the
method body. Second, references to “old” values, using the OLD object reference are
replaced by a single variable – this is explained in more detail in Section 5.4.3. 

 // client code
 Foo  f;
 …
 f = (Foo) jContractor.

New (“Foo” );

  . . .
 // m() is instrumented
 T res = f.m( );

class Foo_CONTRACT _
{   …
   T   m( )   { …}

    protected boolean
    m_PreCondition( )    {…}
…m_PostCondition( )   {…}

…Foo_ClassInvariant( ) {…}
}

 class Foo_Contractor
      extends Foo
      implements Contractor
 {    …
   T  m( )   {
        // additional checks
        // for pre/ post cond’s
        // and invariants
    }
 }

 jContractor
  Instrumentor

“Foo”

Byte codes

class   jContractor  {
   …
Object
New (String  className ) {

   if  (Instrument (className))
    return  (  Instantiate( className
                        +”_Contractor” ));

}
. . .
Object
Instantiate (String  className )   { … }
boolean
Instrument ( String  className)  { … }
…
}

“Foo”

Foo_Contractor
     Object

class Foo
{   …
   T   m( )   { …}

    protected boolean
    m_PreCondition( )    {…}
…m_PostCondition( )   {…}

…Foo_ClassInvariant( ) {…}
}
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Figure 5.5: jContractor Instrumentation Overview

A check wrapper checks the boolean result computed by the wrapped block 
throws an exception if the result is false . A TRY wrapper executes the wrapped cod
inside a try-catch block, and associates each exception handler that the contrac
fies with a catch phrase inside an exception wrapper. Exception wrappers are simple
code blocks that are inserted inside the catch clause of a try-catch block wit
matching Exception  type. Typically, exception handlers re-throw the excepti
which causes the instrumented method to terminate with the thrown exception
possible, however, for the exception handler to recover from the exception con
and generate a result. Figure 5.5 illustrates the overview of these code wrapping
formations. 

class  Foo
{ private boolean

m_PreCondition (<args>) {

}
T m(<args>) {

}
Objectm_onException (E e)
{

}
private boolean
m_PostCondition (<args>) 
{

}
private boolean
Foo_ClassInvariant ( ) 
{

}

PreC 

Method
BODY

Ex-hdlr

PostC

Invariant

class Foo  // instrumented
{ T m(<args>)

{

return Result
}

PreC 

Invariant

BODY
Method

Ex-hdlr

PostC

Invariant

TRY 

Exception

Check

Check

Check

Check

Initializer for OLD refs
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5.4.2    Instrumentation Example

In this section we show examples of a conceptual source-code level instrumen
and then present a concrete byte-code level instrumentation based on current jC
tor implementation. Figure 5.6 illustrates a Java source code-equivalent of the Dictio-
nary Class (Figure 5.1 on page 88) after it is instrumented. Note that jContracto
instrumentation uses only the byte-codes in the Java class files, and generates
mented byte-codes in Java class file format -- no source code (such as the one
in Figure 5.6) is ever generated, it is simply used here to illustrate the transform
logic. 
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Figure 5.6: Factory Instrumented Dictionary Class

For a complete bytecode instrumention example see the simplified Dictionary im
mentation, shown in Figure 5.7. jContractor instruments the class put method to pe
form class invariant and post-condition checks. A JavaClass bytecode listing for the
instrumented put method is shown in Figure 5.8.

class Dictionary_Contractor   extends Dictionary …{
  …

Object put (Object x, String key)
{

Object   $put_$Result;
boolean  $put_PreCondition,

   $put_PostCondition,
   $ClassInvariant;

int     $OLD _$count = this.count;

$put_PreCondition = (  (count <= capacity)
  && (! key.length()==0) );

if (!$put_PreCondition) {
throw new PreConditionException();

}
$ClassInvariant = (count >= 0);
if (!$ClassInvariant) {

throw new ClassInvariantException();
}
try {

$put_$Result = putBody();
}
catch (Exception e) {      // put_OnException

count = $OLD _$count; // restore(count)
throw  e; 

}
$put_PostCondition =((has(x)) && (item (key) == x) &&
              (count == $OLD_$count + 1));
if (!$put_PostCondition) {

throw new PostConditionException();
}
$ClassInvariant = (count >= 0);
if (!$ClassInvariant) {

throw new ClassInvariantException();
}
return $put_$Result;

  }
}
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Figure 5.7: Simple Dictionary Class

public class dict  
{
    protected dict OLD;
    protected int count = 0, 

 capacity = loopCount;
    Hashtable ht = new Hashtable(capacity);

    public Object put(Object x, String key) 
    {

int i=0;
try {
    count++;
    // insert <x,key> pair into the hashtable
    return    ht.put(x,key);
} catch (Exception e) {
    System.out.println(e);
}
return "Error in put("+x+", "+key+")";

    }

    protected boolean put_PostCondition(Object x, String key)
    {

if (!RESULT.compare(null)) {
    System.out.println("Result not NULL: <"+x+">");
    return false;
}
return (  (has (x)) && (item (x) == key)

   && (count == OLD.count+1) );
    }

    protected boolean _ClassInvariant()
    {

return (count >= 0 && capacity >= count);
    }

    private boolean has (Object x) {
if (ht.get(x) != null)
    return true;
else
    return false;

    }

    private Object item (Object  x) {
return ht.get(x);

    }
}
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5.4.3    Instrumentation  of OLD References

jContractor takes the following actions for each unique OLD-expression inside a
method's postcondition or exception handler code. Say the method's name is m()  and
the expression is OLD.attr , and attr  has type T, then jContractor incorporates the
equivalent of the following code while rewriting  m():

T  $OLD_$attr  = this . attr ;

The effect of this code is to allocate a temporary, $OLD_$attr , and record the value
of the expression, attr , when the method code is entered. The code rewriting lo
then replaces all occurrences of  OLD.attr   inside the contract code with the temp
rary variable $OLD_$attr   whose value has been initialized once at the beginnin
the method's execution. 

5.4.4    Instrumentation of RESULT References

jContractor allows the following syntax expression inside a method's postcond
method to refer to the result of the current computation that led to its evaluation:

RESULT. Compare (expression)

RESULT is provided as part of the jContractor library package, to facilitate this synta
expression. It exports a single static  boolean  method, Compare() , taking a sin-
gle argument with one variant for each built-in Java primitive type and one varian
the Object  type. These methods never get invoked in reality, and the sole purpo
having them (like the OLD declarations discussed earlier) is to allow the Java comp
to legally accept the syntax, and then rely on the instrumentation logic to supp
right execution semantics.

During instrumentation, for each method declaration, T m() , a temporary variable
$m_$Result  is internally declared with the same type, T,  and used to store the resu
of the current computation. Then the postcondition expression shown above is r
ten as:

($m_$Result == (T)(expression))
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Class Invariant Wrapping

Figure 5.8: Instrumented put  Method

public Object put(Object, String)
Code(max_stack = 100, max_locals = 100, code_length = 318)

0:    aload_0
1:    getfield dict.count I (42)
4:    istore %5
6:    aload_0
7:    invokevirtual dict._ClassInvariant ()Z (35)
10:   ifne #59
13:   getstatic java.lang.System.out Ljava/io/PrintStream; (50)
16:   new <java.lang.StringBuffer> (25)
19:   dup
20:   ldc "\njContractor Exception: Class Invariant VIOLATION: \nwhen: put(" (200)
22:   invokespecial  java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)
25:   aload_1
26:   invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
29:   ldc ", " (9)
31:   invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
34:   aload_2
35:   invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
38:   ldc ", " (9)
40:   invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
43:   invokevirtual java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
46:   invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (53)
49:   new <java.lang.RuntimeException> (182)
52:   dup
53:   ldc

"Class Invariant VIOLATION: put(Ljava/lang/Object;Ljava/lang/String;)Ljava/lang/Object;"
55:   invokespecial  java.lang.RuntimeException.<init> (Ljava/lang/String;)V (183)
58:   athrow
59:   nop
60:   aload_0
61:   dup
62:   getfield dict.count I (42)
65:   iconst_1
66:   iadd
67:   putfield dict.count I (42)
70:   aload_0
71:   getfield dict.ht Ljava/util/Hashtable; (46)
74:   aload_1
75:   aload_2
76:   invokevirtual java.util.Hashtable.put (Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; 
(54)
79:   goto #123
82:   astore_3
83:   getstatic java.lang.System.out Ljava/io/PrintStream; (50)
86:   aload_3
87:   invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V (52)
90:   new <java.lang.StringBuffer> (25)
93:   dup
94:   ldc "Error in put(" (12)
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96:   invokespecial  java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)
99:   aload_1
100:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
103:  ldc ", " (9)
105:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
108:  aload_2
109:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
112:  ldc ")" (6)
114:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
117:  invokevirtual java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
120:  goto #123
123:  nop
124:  dup
125:  astore %4
127:  aconst_null
128:  aload %4
130:  if_acmpeq #137
133:  iconst_0
134:  goto #138
137:  iconst_1
138:  nop
139:  nop
140:  ifne #174
143:  getstatic java.lang.System.out Ljava/io/PrintStream; (50)
146:  new <java.lang.StringBuffer> (25)
149:  dup
150:  ldc "Result not NULL: <" (14)
152:  invokespecial  java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)
155:  aload_1
156:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
159:  ldc ">" (10)
161:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
164:  invokevirtual java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
167:  invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (53)
170:  iconst_0
171:  goto #210
174:  aload_0
175:  aload_1
176:  invokespecial  dict.has (Ljava/lang/Object;)Z (45)
179:  ifeq #202
182:  aload_0
183:  aload_1
184:  invokespecial  dict.item (Ljava/lang/Object;)Ljava/lang/Object; (47)
187:  aload_2
188:  if_acmpne #202
191:  aload_0
192:  getfield dict.count I (42)
195:  iload %5
197:  iconst_1
198:  iadd
199:  if_icmpeq #206
202:  iconst_0
203:  goto #210
206:  iconst_1
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207:  goto #210
210:  nop
211:  ifne #260
214:  getstatic java.lang.System.out Ljava/io/PrintStream; (50)
217:  new <java.lang.StringBuffer> (25)
220:  dup
221:  ldc "\njContractor Exception: POSTCONDITION EXCEPTION: \nwhen: put(" (204)
223:  invokespecial  java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)
226:  aload_1
227:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
230:  ldc ", " (9)
232:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
235:  aload_2
236:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
239:  ldc ", " (9)
241:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
244:  invokevirtual java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
247:  invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (53)
250:  new <java.lang.RuntimeException> (182)
253:  dup
254:  ldc

"POSTCONDITION EXCEPTION: put(Ljava/lang/Object;Ljava/lang/String;)Ljava/lang/Object;" 
256:  invokespecial  java.lang.RuntimeException.<init> (Ljava/lang/String;)V (183)
259:  athrow
260:  nop
261:  aload_0
262:  invokevirtual dict._ClassInvariant ()Z (35)
265:  ifne #314
268:  getstatic java.lang.System.out Ljava/io/PrintStream; (50)
271:  new <java.lang.StringBuffer> (25)
274:  dup
275:  ldc "\njContractor Exception: ClassInvariant VIOLATION:\nwhen: put(" (208)
277:  invokespecial  java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)
280:  aload_1
281:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
284:  ldc ", " (9)
286:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
289:  aload_2
290:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
293:  ldc ", " (9)
295:  invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
298:  invokevirtual java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
301:  invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (53)
304:  new <java.lang.RuntimeException> (182)
307:  dup
308:  ldc

"ClassInvariant VIOLATION:put(Ljava/lang/Object;Ljava/lang/String;)Ljava/lang/Object;" 
310:  invokespecial  java.lang.RuntimeException.<init> (Ljava/lang/String;)V (183)
313:  athrow
314:  nop
315:  aload %4
317:  areturn
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5.4.5    Use of Reflection

Each class and interface in a Java program corresponds to a translation unit 
machine and platform independent representation as specified by the Java V
Machine class  file  format.  Each class file contains  JVM instructions (bytecod
and a rich set of meta-level information. During the instrumentation process jContractor
parses and  analyzes the meta-information encoded in the class byte-codes in o
discover the jContractor contract patterns. When the class contains or inherits contr
jContractor instrumentor modifies the class bytecodes on the fly and then passe
the class loader. The class name and its inheritance hierarchy; the method nam
natures and code for each class method;  the attribute names found and refere
class methods constitute the necessary and available meta information found
standard  Java class files.  The presence of this meta information in standard Jav
byte codes and  the capability to do dynamic class loading are essential to ou
building a pure-library based jContractor implementation. 

Core Java classes include the java.lang.reflect  package which provides  reflec
tion capabilities that could be used for parsing the class information, but using
package would require prior loading of the class files into the JVM. Since jContractor
completes its instrumentation before loading the class files, it cannot use core refle
tion classes directly and instead uses its own class file parser. 

5.5    Implementation and Performance Issues

jContractor is implemented entirely in Java and can be used with any JDK 1.1 or
It has been tested with the JDK 1.1 and 1.2 on Solaris, and Windows9x/NT
jBuilder on Windows9x/NT. Current implementation uses BCEL: The Byte C
Engineering Library (formerly known as JavaClass) libraries during instrumenta
which must be installed separately. BCEL is a freely available open source p
under the dual GNU Lesser General Public License (LGPL) and the Mozilla P
License (MPL).

Our performance studies show that jContractor instrumented class methods run
efficiently than explicitly hand instrumented version of the methods performing fu
tionally equivalent run-time contract monitoring. We compared the performance o
uninstrumented and instrumented versions of the Dictionary “put” operation show
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Figure 5.7 and Figure 5.8, respectively as well as the manual Design By Contrac
ant, put_HandCodedDBC  shown in Figure 5.9

The cost of checking for contract viloations using hand coded checks (Manual D
is 18.6% - 22.8% of actual “put” processing time. Using jContractor reduces the con-
tract checking overhead by about 14% to 16.2%-20%. This example shows one
performance benefits of jContractor in addition to the convenience of on-th
instrumentation. jContractor instrumentor optimizes contact enforcement cod
inlining and auto-allocating needed temporaries. Cost of runtime DBC checks ap
high using the Dictionary example, but the cost depends entirely on the actua
postcondition expressions. Evaluating Dictionary put post condition, for exam
checks whether the item is "in" the dictionary (i.e. 1 lookup), and also checks wh
the key-object association is correct which is another lookup. While these chec
costly operations with respect to the basic put operation, the ability to effortlessly
contract checking on and off at runtime highlights another benefit of the jContr
system during system debugging and testing.

Figure 5.9: Hand Coded Design by Contract Version of Dictionary Class

public class dict  
{ ... 
    protected boolean put_PostCondition2(Object x, String key, 

Object RESULT, int oldCount)
    {

if (RESULT != null) {
    System.out.println("Result not NULL: <"+x+">");
    return false;
}
return ( has(x) && (item (x) == key)

 && (count == oldCount+1) );
    }

    public Object put_HandCodedDBC(Object x, String key) 
    {

Object result = null;
int oldCount = count;

if (_ClassInvariant()) {

#operations No DBC Manual DBC jContractor DBC

10,000 3,265 +/- 25 4,010 +/- 50 3,920 +/- 20

50,000 9,100 +/- 30 22,650 +/- 20 22,200 +/- 20

Table 5.1: Execution Times for Dictionary “put” Operations (in ms)
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    result = put(x, key);
    
    if (_ClassInvariant()) {

if (!put_PostCondition2(x, key, result, oldCount))
{
    System.out.println("PostCondition violation");
  
}

    } else {
System.out.println("\nClass Invariant violation");

    }
} else {

System.out.println("\nClass Invariant violation");
}
return result;

    } ...

5.6    Summary

We have introduced jContractor, a purely library-based solution to write Design B
Contract specifications and to enforce them at runtime using Java. The jContractor
library and naming conventions can be used to specify the following Design By 
tract constructs: pre- and postconditions, class invariants, exception handlers, aold
references. Programmers can write contracts using standard Java syntax and a
tive naming convention. Contracts are specified in the form of protected method
class definition where the method names and signatures constitute the jContractor nam-
ing conventions. jContractor checks for these patterns in class definitions and rewr
those classes on the fly by instrumenting their methods to check contract violati
runtime. 

The greatest advantage of jContractor over existing approaches is the ease of depl
ment. Since jContractor is purely library-based, it does not  require any special to
such as modified compilers, runtime systems, pre-processors or JVMs, and work
any pure Java implementation.

The jContractor library instruments the classes that contain contract patterns during
class loading or object instantiation. Programmers enable the run-time enforcem
contracts by using a command line switch at start-up, which installs the jContractor
instrumenting class loader. jContractor object factory provides an alternative mech
nism that does not require engaging the jContractor ClassLoader to instantiate instru
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mented  objects. Clients can instantiate objects directly from the jContractor factory,
which can use any standard class loader and does not require a command line 
Either way, clients can use exactly the same syntax for invoking methods or pa
object references regardless of whether contracts are present or not. Contrac
tions result in the method throwing proper runtime exceptions when instrume
object instances are used.

We also describe a novel instrumentation technique that allows accessing the old val-
ues of variables when writing postconditions and exception handling methods
example, OLD.count  returns the value of the attribute count  at method entry. The
instrumentation arranges for the attribute values or expressions accessed throu
OLD reference to be recorded at method entry and replaces the OLD  expressions  with
automatically allocated unique identifiers to access the recorded values.
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Chapter 6

Comparisons with Other Approaches
and Related Work

6.1 Library Based Language Extensions

Many statically typed general purpose programming languages use libraries to e
the language with new features and functionality. For example, C and C++ rely o
presence of externally linked system and run-time support libraries and standard
cation programming interfaces (APIs) to support user-level operating system 
services and abstractions such as streams, files, file-systems, dynamic memory 
tion, processes, threads, interprocess communication, networking, etc., For exa
standard I/O libraries extend C language in such a way that most C programme
and think of these calls (printf, scanf, etc.,) as if they were part of the C language
nition. Platform specific frameworks such as MFC, COM, OLE/ActiveX provide W
dows C/C++ programmers support for designing graphical user interfaces(GUI) 
standardized component and communication model. AWT/JFC/Swing provide a
form independent Java framework for designing GUIs. OMG’s CORBA 
Microsoft’s DCOM provide language and platform independent frameworks
developing distributed applications. Java has direct language support for thread
implicit dynamic memory allocation, yet, relies on a rich set of libraries organize
core language packages to support windowing abstractions, networking, imaging

Many interpreted or scripting languages, such as Common Lisp, Tcl, and Perl, al
a library based extension approach. Common Lisp extension CLOS provides 
orientation. Tcl extension, Tk, provides graphical and windowing support; Incr
extension provides object-orientation. Perl uses packages to provide seamless
to just about any operating system level function. 
109



s to
nifi-
orrect
atform

 typi-
l way
 level
one
uage

cus-

lf may
e to a
bility,
ion we

f nam-

ctions
 in lit-

18],
25].
ency
Standardized libraries and frameworks typically offer a rich set of low level API
offer greater control and flexibility, but tend to be error-prone as they assign sig
cant responsibility to a programmer to keep track of state, consistency, and c
usage and require steep learning curves and a fair amount of commitment to a pl
even to perform fairly simple or common tasks. 

Complex systems require higher levels of programming abstractions than those
cally provided by standardized system level libraries and frameworks. The idea
to support high-level abstractions is to have direct language support. Language
support can provide simplicity, safety and performance efficiency. Traditionally 
of the following approaches have been used to introduce new high-level lang
abstractions:

1. Design a brand new language with new features and abstractions.
2. Extend an existing language with new and non-standard extensions using 

tomized compilers, preprocessors, or run-time environments.

Both of these approaches offer custom and dedicated solutions but this in itse
cause problems. It may be impossible or impractical for programmers to migrat
new language and/or development or runtime environment. Maintenance, relia
security and future support issues might also hinder acceptance. In this dissertat
have described techniques using an alternative approach:

3. Extend an existing object-oriented language using a purely library based 
approach to provide new high-level abstractions.

We introduced new language extensions by designing class libraries and a set o
ing and programming conventions for concurrency, distributed computing and design
by contract for the object oriented languages, Eiffel and Java. In subsequent se
of this chapter we present a comparison of each system with other related work
erature.

6.2 Introducing Concurrency to Sequential Object-Oriented Languages

6.2.1    Eiffel Concurrency Extensions 

There are several proposals for concurrent programming with Eiffel: Eiffel// [
Meyer’s proposal [54], CEiffel [47], and Colin and Geib’s Concurrency Classes [
Our mechanism is most similar to Eiffel//. Primary differences are: our concurr
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mechanism does not modify the Eiffel compiler, provides full support for coping 
local delays, and allows post-actions after returning results in active objects. 

Meyer’s proposed extension to Eiffel also takes a process based approach that u
assertion mechanism of Eiffel for synchronization. Colin and Geib’s Concurre
Classes do not modify the Eiffel language, similar to our approach, however they
single address space with light-weight threads, and have a very different appro
the way they view an activity (or thread) independent from objects. 

CEiffel is based on expressing concurrency properties attached to classes, or m
in the form of annotations. CEiffel also provides strong support for reusability, inc
ing a novel mechanism which allows concurrent objects to be reused as sequ
objects by a compiler switch which ignores the concurrency annotations. Both
mechanism and Eiffel// differ from CEiffel and Colin and Geib’s model in not s
porting multiple-threads in active objects. 

6.2.2    Related Work Introducing Concurrency to Object-Oriented Languages

Three distinct approaches exist for introducing concurrency to object-oriented
tems: 

• Design a new concurrent object-oriented language. 

• Extend an existing object-oriented language. 

• Design a Concurrency Library. Use an existing object-oriented language and 
provide concurrency abstractions through external libraries. 

Many references and comparative discussions about general concurrent obje
ented languages can be found in [3], and [61]. Most of the earlier systems fall in
first approach: design a new object-oriented language with built-in concurrency. S
examples are: Hybrid [57], POOL [5] (and its variants), SR [6], ABCL/1 [73] and J
[31]. These new languages provide powerful concurrency abstractions and gen
purpose programming capabilities. Most of the extensions introduce concurrency to
their respective languages using some combination of the following techniques: 

• inheritance from special concurrency classes that the modified compiler reco
nizes — e.g. Eiffel// [19] , PRESTO [8] ; 

• special keywords, modifiers or preprocessing techniques to modify or exten
language syntax and semantics — e.g.  µ C++ [14] , CEiffel [48]; 
111



 con-
1]. 

 the
 of
n-

xisting
of the
t con-

logical

tarted
-
s
s for

ntal
es of

gory
since
 active
 [5],
ess

pu-
sts;

 task.
n pro-
 com-
tions
• extension to the syntax and semantics of the language to support a general
currency paradigm such as the Actor model [2] — e.g. ACT++ [37], Actalk [1

Our concurrency mechanism, and Colin and Geib’s [25] Eiffel Classes, fall in
library approach. The approach of introducing concurrency via a class definition
Process is also used in the Choices operating system [16] where they use the C++ la
guage. The library based solutions are attractive since they do not replace the e
software development platform. However, the sequential execution semantics 
host language may impose restrictions on providing type-safety and intra-objec
currency. 

The order in which we have presented the three approaches follows a chrono
order. Most of the earlier concurrent object-oriented languages were new languages.
As object-oriented thinking matured and sequential object-oriented languages s
to become popular, numerous proposals were made to extend these sequential lan
guages for concurrent programming. The library approach is most recent, and ha
been influenced by most of the earlier work on concurrency. The latest trend
object-based concurrency emphasize and address issues such as reusability and com-
patibility with object-oriented software engineering techniques as fundame
requirements [48], [58]. A major focus of our work has been to address the issu
reusability and compatibility with the object-oriented paradigm. 

Our concurrency mechanism fits into the non-uniform, and non-orthogonal cate
of Papathomas’ classification of object-oriented concurrency approaches [61], 
we allow both active and non-active objects to co-exist and have single threaded
objects. Some other languages that belong to this classification are POOL-T
ABCL/1 [73], and Eiffel// [18]. The basic mechanism in our methodology to acc
results of asynchronous calls, i.e. using the call_ids returned by remoteInvoke , are
similar to the ConcurrentSmalltalk’s CBoxes [72] and ABCL/1’s future type mes-
sages[73]. 

6.3 Distributed Computing and Active Object Extensions

Distributed computing uses networking and communication to enhance a local com
tation by potentially distributing   portions of the computation among different ho
or to collaborate with other executing programs towards accomplishing a global
What makes distributed programming challenging is the semantic gap betwee
gramming language semantics involving local and remote computations and the
munication abstractions. Distributed programs require higher levels of abstrac
then TCP/IP or other basic networking protocols. 
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Most distributed computing systems use widely available and standardized com
cation and distribution protocols: lower level mechanisms such as RPC[9] DCE[5
object-based distribution protocols such as CORBA[60], RMI[70], ILU[3
HORB[67] or DCOM[10]. All of these systems add a distribution layer on top o
general purpose programming language system: an intermediate interface definition
language (IDL) and an IDL-to-application language tool is provided to support c
ation of remote stubs/proxies, and for registering or locating remote interface im
mentation objects/servers. Numerous experimental and research prototypes
distributed operating systems such as Sprite[27], Inferno[49] support distributed 
and access primitives as operating system functions; languages such as Emera
Telescript[69], Agent-Tcl[32] are specifically designed for writing distributed appli
tions.

Active Remote Method Invocation system, Active-RMI, is a set of class libraries, tools
and a design method which collectively provides high-level abstractions for bui
distributed Java applications based on the notion of active remote objects. Active-RMI
is a natural extension of our work involving introducing concurrency extension
Eiffel language using class libraries[41]. Active-RMI is implemented as an extensio
to the Java RMI system without extending the Java Language[31] or its run-time e
ronment. Active-RMI provides a very high level of programming for writing comple
object distribution and synchronization applications entirely in Java. Three 
abstractions provided by the Active-RMI model are: the active remote objects with
user level scheduling; asynchronous method invocation with data-driven, non-block-
ing synchronization; and transparent remote object creation.

In this section we discuss languages or language extensions which provide pro
ming abstractions and services for building distributed, parallel and mobile app
tions.

6.3.1    Java Based Related Work

Java appears to be an ideal language for distributed computing with standard b
features: platform independence, multi-threading and synchronization const
remote method invocation (RMI) system, dynamic and networked class loading. 
ever, the abundance of distributed computing extensions for Java discussed in th
tion indicate the need for additional and higher-level abstractions. Also, Brose 
show that [12,13] that Java’s method-calling semantics, pass-by-value, lead to
ceptable latencies when accessing arrays, and even class instances. Java, ev
RMI, does not exhibit access transparency, or identical method calling syntax
semantics for both local and remote objects. 
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ProActive PDC [20] is the most similar approach to Active-RMI. ProActive PDC (fo
merly known as Java//) is a library for Parallel, Distributed, and Concurrent prog
ming in Java. It is entirely API-based, needing no special compiler or JVM. The id
to run the same program as a sequential application, a multithreaded single-node
cation, and a distributed application. The programmer provides hints to the sy
through its API, and also uses the API to get implicit futures (using wait-by-neces
continuations (a transparent delegation mechanism), and active objects. Run
program on the different kinds of platforms supported by ProActive PDC is achi
through object composition. The user defines a sequential object, which the s
then composes with a proxy and a so-called body. The proxy turns local calls into
sages, which are decoded by the body. Futures and continuations are provided 
ating specialized subclasses of user objects which contain the appropriate code.

Sumatra is an extension of Java that supports resource-aware mobile prog
Sumatra has not modified Java language syntax and can run all legal Java pro
without modification. All added functionality is provided by extending the Java c
library and by modifying the Java interpreter, without affecting the virtual mac
interface. Sumatra adds four programming abstractions to Java: object-groups, 
tion-engines, resource-monitoring and asynchronous events. Computation begi
single site and spreads to other sites in three ways: (1) remote method instantiati
remote thread creation, and (3) thread migration. Active-RMI directly supports
first two mechanisms. Remote method instantiation is essentially an RMI style
chronous remote method invocation. Remote thread creation differs from re
method instantiation in that the new thread is independent of the creating threa
creating thread continues execution once the creation is complete. This is very s
to Active-RMI aynchronous remote method call, except that remote execution is
formed within a previously created active object context. Active-RMI does 
directly support thread migration which involves stopping the execution of the ca
thread at the current site, transferring its state to another site and resuming execu
that site. Sumatra uses a master daemon which runs on all machines that allow c
of execution-engines and listens on a well-known socket. When a execution-e
creation request is received, it creates a new interpreter process which attempts 
to specified socket. This daemon is very similar to the Active-RMI’s armiServer util-
ity.

The Kan system [34] extends Java language with asynchronous method calls (us
expressing concurrency), guards (used for expressing dataflow and synchroni
constraints), and nested atomic transactions (used for expressing atomicity). Kan
distribution, replication, migration, and faults from the programmer when writing 
allel and distributed applications. Kan extends Java’s syntax and relies on a sp
ized compiler which produces standard Java bytecodes, containing calls into th
runtime system. That system itself is written in pure Java, so the system and
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applications run on any standard Java Virtual Machine, using Java sockets for co
nication.

cJVM[7] distributes the JVM onto homogeneous clusters of computers on a 
speed network, and runs unmodified Java programs on each JVM. It was desig
support servers, by distributing the server load across the cluster. Hence, it pe
best on applications with a large number of independently executing threads.

Do! [44] uses a modified Java compiler to automatically generate distributed 
from multithreaded program source code. The Java language is not extended, 
user is given an API for providing hints to the compiler about appropriate mappin
threads and objects to distributed system nodes. The generated code uses stand
RMI for communication. It uses a runtime library that supports the creation 
manipulation of remote objects. 

JavaParty [62] is an extension to Java. It adds transparency to remote objects, by
ing the complexity of RMI. It also transparently migrates objects for greater avail
ity. JavaParty compiles down to standard Java bytecodes, allowing Java
programs to run on any JVM. It also supports easy integration of standard Java
files, compiled externally to the JavaParty system. The JavaParty project has pro
improved Serialization [63] and RMI [56] implementations. However, their soluti
are not portable across JVMs.

Javelin [24] is a prototype infrastructure for Internet-based parallel computing u
Java. In Javelin model there are three kinds of participating entities: brokers, c
and hosts. Javelin allows machines connected to the Internet to make a portion o
idle resources available to remote clients and at other times utilize resources
other machines when more computational power is needed. Javelin system prov
parallel programming language layer which offers support for the SPMD prog
ming model and Linda Tuple Space from within an applet. Javelin describes s
programming models that enable programmers to express many parallel program
constructs in their client applet code. These programming models are realized b
cuting specialized servlets on the broker. Standard Java language and syntax is

Nile [66] project provides a self-managing, fault-tolerant, heterogeneous system
posed of hundreds of commodity workstations, with access to a distributed dat
whose size is on the order of hundreds of terabytes. It is written in Java for hetero
ity. CORBA is used as a data management layer. It is structured to run embarras
parallel applications; i.e., those with independent parallel subtasks, such as web
ers. The database itself is widely distributed, with replication providing some de
of fault tolerance. The failure of a job is automatically detected, and the job is res
if the failure can be repaired or worked around. The basic operation of Nile is to d
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the application into subparts and distribute those subparts to the constituent com
nodes, then collect and collate the results. If a subpart fails, recovery consi
assigning the subpart to a new computing node. 

Parallel Java [38] is an extension to the Java language to support parallel constru
is based on earlier work on a C++ extension, called Charm++. The parallel exten
provide for the creation of remote objects via proxies, with automatic load balan
Objects with a port on every node are called object groups, and allow for easy e
sion of algorithms requiring global coordination, such as barriers. Parallel Java i
of a larger effort, named Converse, which is aimed at providing multilingual par
support. That is, Parallel Java programs can interact with parallel libraries writt
other languages supported by Converse. Parallel Java uses Java Serializati
Reflection to provide portable means of accessing remote objects.

6.3.2    Other Languages and Systems

Compositional C++ (CC++) [22] is a superset of C++, adding the keywords sync
bal, par, parfor, atomic,and spawn. It provides support for explicit parallelizatio
programs by way of declaring blocks of code as parallel, in either a synchrono
asynchronous manner. Loops can be declared as parallel as well. Synchroniza
provided in the form of atomic methods. The C++ language is extend to provide g
pointers to CC++ objects. Each main process is itself an object, which allows
cesses to operate on one another. The consistency guarantee is cache consiste
Section 6.2.5), a fairly weak guarantee. CC++ is a parallel language able to s
blocks of code as atomic, construct global pointers to objects, and spawn new t
at the language level.

Charm++ [39] is a C++ extension. The basic unit of computation is the chare. A 
can be located on a specific node, or it can be a branch office chare, with local c
nents on every node. A number of common modes of information sharing are
ported by means of shared variables. Several types are available, including rea
variables, accumulator variables, monotonic variables, write-once variables, an
tributed tables. In general, an object can choose its own method ordering pro
through system calls that indicate the messages which the object is willing to re
It does so by expressing the method protocol dependencies as a directed acyclic
However, there is no intra-object concurrency possible and no values can be re
in response to a message (i.e., concurrent methods all have return type void). Th
sistency guarantee is broadcast consistency. 
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COOL [21] is a specialized language which supports concurrent method execut
an object that adheres to the multiple reader-single writer protocol. This is don
specifying a method to be either of type mutex (writer) or non-mutex (reader).
COOL runtime system then ensures this consistency model by using read and
locks. Intra-object concurrency is supported. Condition variables and monitor
used to implement inter-object communication. While these provide synchroniza
they are unable to pass values back (that is, concurrent methods cannot return v

Concert [23] supports distributed objects with an aim towards providing fine-gra
parallelism. Object-based concurrency control and encapsulation, and a dynami
currency model are provided. The thrust of the project is to use aggressive whol
gram compilation, interprocedural optimization, and an efficient runtime sys
which works in concert with the compiler optimizations.

Emerald [36] is a strongly-typed pure object-oriented language. Objects can m
between nodes. Objects can be declared immutable, which simplifies sharing. Th
both inter-object and intra-object concurrency. Objects can be declared as mo
which simplifies handling intra-object concurrency. Objects with a process (exec
in parallel with the monitor) are active; those without a process are passive
method calls are synchronous; new threads of control arise by creating a new 
object. A garbage collector reclaims unreferenced objects.

Obliq [17] is a language based on Modula-3 which supports distributed objec
ented programs through migrating threads. A computation can roam over the ne
while maintaining connections between its constituent parts. Objects are local to
computing node, but threads migrate. Hence, a distributed computation consists
migration of a thread over the necessary set of objects. Obliq is a lexically-sc
untyped interpreted language. It contains a notion of hierarchical spaces; an 
computation may involve multiple threads of control within an address space, mu
address spaces on a machine, heterogeneous machines over a local network, a
tiple networks over the Internet.

6.4 Extensions for Design by Contract 

The idea of associating boolean expressions (assertions) with code as a means 
the code’s correctness can be traced back to Hoare [33] and others who worked
field of program correctness. The idea of extending an object-oriented language
only libraries and naming conventions appeared in [41]. The notion of comp
assertions into runtime checks first appeared in the Eiffel language [52]. 
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Eiffel is an elegant language with built-in language and runtime support for Desig
Contract. Eiffel integrates preconditions (require-clause), postconditions (ensure-
clause), class invariants, old and rescue/retry constructs into the definition of method
and classes.  jContractor is able to provide all of the contract support found in Eiffel,
with the following differences: jContractor supports exception-handling with fine
exception resolution – as opposed to a single rescue clause; jContractor does not sup-
port the retry construct of Eiffel. We believe that if such recovery from an excepti
condition is possible, it is better to incorporate this handler into the implementati
the method itself, which forestalls throwing the exception at all. jContractor' support for
old supports cloning semantics where references are involved, while Eiffel does 

Duncan & Hölzle introduced Handshake[28], which allows a programmer to w
external contract specifications for Java classes and interfaces without changi
classes themselves. Handshake is implemented as a dynamically linked libra
works by intercepting the JVM’s file accesses and instrumenting the classes on 
using a mechanism called binary component adaptation (BCA). BCA is develope
on the fly modification of pre-compiled Java components (class bytecodes) 
externally provided specification code containing directives to alter the pre-com
semantics [42]. The flexibility of the approach allows Handshake to add contra
classes declared final ; to system classes; and to interfaces as well as classes. 
of the shortcomings of the approach are that contract specifications are written 
nally using a special syntax; and that Handshake Library is a non-Java system th
to be ported to and supported on different platforms.

Kramer’s iContract is a tool designed for specifying and enforcing contracts in J
[43]. Using iContract, pre-, postconditions and class invariants can be annotated i
Java source code as “comments” with tags such as: @pre, @post. The iContract tool
acts as a pre-processor, which translates these assertions and generates modi
sions of the Java source code. iContract uses its own specification language f
expressing the boolean conditions.

Mannion and Philips have proposed an extension to the Java language to s
Design By Contract [50], employing Eiffel-like keyword and expressions, whic
become part of a method’s signature. Mannion’s request that Design By Contra
directly supported in the language standard is reportedly the most popular “non
request in the Java Developer Connection Home Page (bug number 4071460).

Porat and Fertig propose an extension to C++ class declarations to permit specif
of pre- and postconditions and invariants using an assertion-like semantics to s
Design By Contract [64].
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Chapter 7

Conclusion

The original research work conducted as part of this dissertation introduced new
guage extensions for concurrency, distributed computing and design by contra
the object oriented languages, Eiffel and Java. We demonstrated that powerfu
abstraction capabilities can be introduced using a purely library based approach
set of naming and programming conventions without violating the object-orie
principles or compromising other language or safety features.

We developed techniques to build extensible, open object-oriented libraries th
and take advantage of the existing low-level system and vendor libraries, platf
frameworks to support several new high-level abstractions. Programmers use
abstractions by following our naming and programming conventions. We illustrat
applicability of our approach by building and presenting three original research a
cation systems: Class CONCURRENCY, Active-RMI and jContractor. Class CON-
CURRENCY introduces concurrency, active objects, asynchronous calls, data-d
synchronization and scheduling abstractions to Eiffel. Active-RMI introduces asyn-
chronous remote method invocation with future-type results; asynchronous 
delivery; transparent remote-object creation; active-object semantics; user pro
mable scheduling and synchronization to Java. jContractor introduces Design by Con-
tract to Java. Table 1.1, “Overview of Dissertation Research.,” on page 6 lists fe
outline of these three systems we have built and the new abstractions we intro
for each system.

The Class CONCURRENCY provides concurrency, active objects, asynchronous ca
data-driven synchronization and scheduling abstractions to Eiffel objects as enc
lated and inheritable properties. Objects which inherit from the Class CONCUR-
RENCY acquire a separate thread and private state and become active w
programmable scheduler. Active objects’ methods can be called asynchronously
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deep-copy pass-by-value semantics for normal object arguments and reference p
semantics for active object arguments. 

Active-RMI extends Java with asynchronous remote method invocation & future-
results; asynchronous result delivery; transparent remote-object creation; active-
semantics; user programmable scheduling and synchronization. Active-RMI  objects
are started as autonomous  agent-like objects, with complete, user programmab
trol over scheduling and execution of incoming  requests. 

jContractor is a pure Java library which requires no special tools such as mod
compilers, modified  JVMs, or pre-processors to support Design By Contract 
structs: preconditions, postconditions, class invariants, recovery and exception
dling. jContractor uses an intuitive naming convention, and standard Java syntax
designer of a class specifies contracts by providing contract methods following jCon-
tractor naming conventions. jContractor uses Reflection to synthesize an instr
mented version of a Java class by incorporating code that enforces the p
jContractor contract specifications. Programmers enable the run-time enforceme
contracts by either engaging the jContractor class loader or  by explicitly instantiatin
objects using the jContractor object factory. Programmers  can use exactly the sa
syntax for invoking methods and passing object references regardless of whethe
tracts are present or not. 

Our work illustrates advantages of employing libraries to support new abstraction
functionality: the core languages are left in tact allowing programmers to use 
standard development tools and environments. Developing the libraries indepen
as a layer above the native O/S or language services leads to performance effi
portability and ease of development and maintenance.

We have identified the following advantages for using the pure library based app
when introducing new high-level programming abstractions to an object-oriented
guage:

• Libraries provide a more flexible and extendible solution since they can be tai-
lored to the specific needs and characteristics of the target operating system
hardware by modifications or refinement of the libraries. New abstractions th
are hard wired into the language may be impractical or impossible to chang
similar analogy exists in the operating system research. It is more desirable
implement smaller (micro) kernels that move a lot of the traditional kernel 
abstractions and services out of the kernel (and implement as application-le
processes) in favor of reduced complexity and size and enhanced flexibility 
even though it might have been more efficient to provide these services with
larger, monolithic kernel. 
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• Reuse of existing libraries can be supported after new features are introduced
Radical changes to the language and the object model may render existing 
obsolete. Hence reusability is improved. 

• It is more practical and easier to design and maintain a library than inventing a
new concurrent object-oriented language, or modifying an existing languageand 
its compiler (even when there are compilers available for modifications). 

• By using a strictly object-oriented technique — designing reusable libraries —
introduce new abstractions and keeping the original language in tact, the princi-
ples of object-oriented programming and design are not violated. 

• Adding new features by modifying the language may add a great deal of com-
plexity and restrictions to its future evolution. It might even be impossible or 
ficult to port the language to new hardware or operating system platforms w
the added concurrency specifications. Libraries offer a modular and robust m
anism for supporting constantly evolving hardware and O/S platforms. 

• Object-oriented libraries support user level extensions. 

• Object-oriented libraries can support systematic layered views allowing diffe
levels of abstractions to be delivered to different types of users. While the ca
user can use the high-level abstractions, more sophisticated users can use 
reuse) the entire library, with all of its lower-level abstractions (such as IPC, O
interaction, etc.,.) and extend or design new higher-level abstractions. 

• Designing libraries can help the language designer from fully committing to 
specific solution. 

• Users are less likely to switch to a non-standard language extension that is c
tomized for programming especially if switching would require also switchin
(or abandoning) tools and existing libraries. Whereas library based extensio
can be easily incorporated to the user’s programming environment.

7.1 Summary of Key Contributions

• We have shown by way of designing and implementing how class libraries a
associated programming and naming conventions can be used to introduce
abstractions to object-oriented languages.

• We have introduced high-level concurrency abstractions: active objects, asy
chronous calls, data-driven synchronization and scheduling to Eiffel by desi
ing and implementing the Class CONCURRENCY.

• We have introduced high-level distributed computing abstractions: active 
121



e 

d 

 
he 

duce 

ng an 
on 

to 

h 

w 

f Java 

tly a
desir-

ation
address
ulti-

duced.
f an
e been
must
n, pro-
objects, asynchronous calls, data driven synchronization, scheduling, remot
object creation by designing and implementing Active-RMI system.

• We have introduced design by contract abstractions to Java by designing an
implementing jContractor system.

• We have introduced user-level programmable scheduling capability to active
objects. Scheduling and synchronization decisions can be made based on t
type, signature and contents of the request messages.

• We have shown how reflection capabilities of languages can be used to intro
type-safe and syntactically clean abstractions -- jContractor and Active-RMI.

• We have shown how to enhance syntax and enforce type safety by introduci
automated design method for using library based abstractions when reflecti
and meta programming capabilities are limited -- Class CONCURRENCY.

• We have introduced techniques using reflection and dynamic class loading 
perform runtime instrumentation.

• We have introduced a factory-based runtime instrumentation technique whic
can be used when overloading class loaders is not possible -- jContractor.

• We have introduced new runtime instrumentation techniques to introduce ne
syntax -- OLD & RESULT in jContractor.

• We have shown new techniques to use dynamic class loading capabilities o
to provide high level abstractions for remote object creation.

7.2 Open Problems and Future Directions

An important area of further study for us is the security modeling. We have curren
rather strict security mechanism based on the RMI security model, however, it is 
able to have less rigid authorization and security abstractions. 

An issue that requires further investigation is about identifying the synchroniz
and correctness needs in the presence of multi threaded schedulers in shared-
spaces. Without having explicit control over the scheduling and preemption of m
ple threads in a shared-address space many new technical difficulties are intro
Some of these difficulties are related with mutual exclusion of the execution o
objects’s methods, and non-reentrant system calls. Some of these issues hav
mentioned in [15]. A concurrency mechanism with multi threaded active objects 
satisfactorily address the interference problem with respect to data encapsulatio
122



bitrary

s

. 
cedural abstraction and reusability issues, that emerge due to the potential ar
interleavings of an object’s methods. 

We have done preliminary design of a new system, jActivator, which can be seen a
the next generation of Active-RMI. jActivator will use jContractor style class loading
time instrumentation to implement active objects and asynchronous method calls
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Appendix A  

class  CONCURRENCY export  
 split, attach, remoteInvoke, claimResult, resultReady  
  -- Non-exported features: 
  -- current_request, has_split, is_proxy, 
  -- request_queue, result_queue, sendResult 
  -- getRequest, pendingRequestExists  
inherit  
IPC 
  -- Interprocess Communication primitives 
feature  
request_queue : LINKED_LIST [REQUEST] is  
  -- implemented as a linked list of REQUEST 
  -- objects. REQUEST is a class of Parallel 
  -- Parallel Library; see appendix B. 
  -- LINKED_LIST is a generic class of Eiffel 
  -- data structure library [eif] 
result_queue : LINKED_LIST [RESULT] is  
  -- queue of all results received;
  -- see appendix A for RESULT 
current_request : REQUEST ; 
  -- most recently dequeued request_queue item. 
  -- contains the IPC information about the client,
  -- the feature name, and a list of actual 
  -- parameters (of type: unbounded_array[ANY]) 
has_split : BOOLEAN ; 
  -- split or attach sets to true.
is_proxy : BOOLEAN ; 
  -- set to true by attach or split 
  -- set to false in the active object
scheduler() is  
  deferred  
   -- requires any Class inheriting from 
   -- CONCURRENCY to provide a scheduler.
split() is  
  require  
   not  has_split -- precondition for split 
  -- creates a new process to function as a server 
  -- creates a socket on the client, 
  -- initializes IPC parameters, 
  -- starts handshake protocol with server, 
  -- sets has_split and is_proxy to true,
  -- returns and unblocks client. 
  -- The server process completes handshake, 
  -- starts-up a new Eiffel runtime environment 
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  -- initializes server IPC params, 
  -- starts executing server’s scheduler. 
 attach( old_server_info : SOCKET) is  
  require  
   not  old_server_info. Void  
  -- like split except no new process is created, 
  -- sets has_split and is_proxy to true,
  -- no handshake done; 
  -- returns immediatelly after initializing 
  -- client side of IPC parameters. 
 remoteInvoke( feature_name: STRING, 
   parameters: ARRAY[ANY] ): INTEGER is  
  require  is_proxy; 
   -- cannot remoteInvoke unless a is_proxy.
  -- asynchronously delivers the request to the 
  -- server, and returns without blocking. 
  -- returns a request handle (claim_number) 
  -- to the client identifying the request 

 result_available (claim_number : INTEGER ): 
   BOOLEAN  is  
  require  is_proxy; 
  -- scans the result_queue to check if the result 
  -- associated with claim_number has arrived. 
  -- Returns, without blocking, true  
  -- if associated result is in queue. 
 claimResult (claim_number: INTEGER ): ANY is  
  require  is_proxy; 
  -- if the result associated with claim_number 
  -- is available: returns (by dequeueing it 
  -- from result_queue) the corresponding result 
  -- otherwise, blocks until the result arrives. 
  -- The result is of type ANY. Every class in 
  -- Eiffel is a descendant of this Kernel Library 
  -- class ANY, and therefore all class types 
  -- conform to it; thus claimResult is general
  -- purpose, and applicable to any result type. 
 sendResult ( result_value : ANY) is  
  -- result of the current_request is delivered to 
  -- the client. 
  -- result_value is of type ANY, therefore 
  -- the actual result needs to be 
  -- reverse-assigned to the original result type
  -- after calling this method. 
  -- result is delivered asynchronously. 
 getRequest() is  
  -- If there are pending requests in the system,
  -- place them into the request_queue, and
  -- return (without dequeueing); 
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  -- otherwise: block until some request(s) arrives,
  -- place them into request_queue; return.
 pendingRequestExists() is  
  -- Return true: if there are pending requests 
  -- in the system. 
  -- Return false: otherwise. 

end  -- CONCURRENCY 

Appendix B 

class  RESULT export  
 claim_no, set_claim_no,return_value, set_return_value 

feature  
 claim_no : INTEGER ; 
 -- this is the request handle the client uses 
 -- to associate the result with the request. 
 set_claim_no ( id_res : INTEGER ) is  
 -- exported routine to set claim_no. 
 return_value : ANY; 
 -- result of the request as set by the server 
 -- type must conform to ANY 
 set_return_value( val : ANY )  is  
 -- exported routine to set return_value

end -- RESULT 

Appendix C 

class  REQUEST export  
 claim_no, set_claim_no, req_type, set_req_type, 
 feat_name, set_feat_name,  
 parameters, set_parameters 

feature  
 claim_no: INTEGER; 
 -- unique id for each request 
 set_claim_no( req_num: INTEGER) is  
 -- exported feature to set claim_no 
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 req_type: INTEGER; 
 -- func, rout, attr, rattr, battr, msg, etc. 
 -- (optionally) used to determine what action 
 -- to take by the server 
 set_req_type( r_type : INTEGER )  is  
 -- exported feature to set req_type 
 feat_name : STRING ; 
 -- name of the method to be remote invoked 
 set_feat_name( f_name : STRING)  is  
 -- exported feature to set feat_name 
 parameters : ARRAY [ANY] ; 
 -- the array contains the arguments of 
 -- the method to be remote invoked. 
 -- the client needs to initialize the elements in 
 -- the same order used to execute the routine. 
 set_parameters ( par_list : ARRAY [ANY] ) is  
 -- exported feature to deep clone parameters 

end -- REQUEST 

Appendix D 

class  FUTURE export
data, is_ready

feature
proxy: CONCURRENCY;

--proxy object used during remote invocation
call_id: INTEGER;

--the handle returned by remoteInvoke
returned_data : ANY;

--the data object returned by claimResult
create(proxy_obj: Conc_A, call_no: INTEGER) is

do
proxy := proxy_obj;
calli_id:= call_no;

end ;
data: ANY is -- blocking acces to result

do
remote _access;
Result := returned_data;

end ;
128



remote_access is
once

returned _data := proxy.claimResult(call_id);
end ;

is_ready : BOOLEAN is
do

Result := proxy.resultReady(call_id);
end ;

end; - FUTURE
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