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ABSTRACT

Pure Library and Reflection Based Language
Extension Techniques for Object Oriented
Systems

by
Murat Karaorman

In order to cope with the increasing complexity and evolving requirements of soft-

ware, we need better languages and modeling tools which support higher and more
suitable levels of abstraction. The original research work conducted as part of this
dissertation introduced new language extensions for concurrency, distributed com-
puting and design by contract for the object oriented languages, Eiffel and Java. We
demonstrated that powerful new abstractions can be introduced using a purely
library based approach and a set of naming and programming conventions without
violating the object-oriented principles or compromising language or safety features.

We developed techniques to build extensible, open object-oriented libraries that use
and take advantage of the existing low-level system and vendor libraries, platforms,
frameworks to support several new high-level abstractions. Programmers use these
abstractions by following our naming and programming conventions. We illustrate
the applicability of our approach by building and presenting three original research
application systemsClass CONCURRENCY, Active-RMihd jContractor Class
CONCURRENCYntroduces concurrency, active objects, asynchronous calls, data-
driven synchronization and scheduling abstractions to EAfglve-RMlintroduces
asynchronous remote method invocation with future-type results; asynchronous
result delivery; transparent remote-object creation; active-object semantics; user
programmable scheduling and synchronization to Jgvantractor introduces
Design by Contract constructs: preconditions, postconditions, class invariants,
recovery and exception handling to Java through an intuitive naming convention, and
standard Java syntaxContractor uses reflection and dynamic class loading terch-
nigues to discover contract specifications by examing Java class bytecodes and
synthesizes and loads an instrumented version of the Java class which incorporates
code that enforces the runtime checking of contracts.
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Chapter 1

Introduction

Designing a software system involves meeting the requirements of the problem at
hand with a given set of software and hardware capabilities. The type of software
design tools and abstractions available to the designer greatly influences the feasibil-
ity, the amount of effort, and the quality of the solution. Operating systems and high-
level programming languages and libraries provide the basic software abstractions
available to the programmer. The fundamental software and hardware abstractions do
not change nearly as fast as the pace at which hardware, memory and communication
becomes faster and cheaper. As hardware keeps getting cheaper and more powerful,
computer applications continue to reach into larger, more complex and sophisticated
domains.

In order to cope with the increasing complexity and evolving requirements of soft-
ware, there is always a need for better modeling tools and languages supporting higher
and more suitable levels of abstraction. This dissertation describes techniques for
introducing new fundamental abstractions to object-oriented languages without requir-
ing changes to the language or its development environment. Our approach includes
designing class libraries and associated programming and naming conventions to pro-
vide new abstraction capabilities to object-oriented programming languages. We illus-
trate the applicability of this approach by building and presenting three original
research application systems. We discuss in detail the design and implementation of
class libraries, programming and naming conventions and reflection techniques to
introduce high-level language abstractions to Eiffel and Java for concurrency; asyn-
chronous calls and data-driven synchronization; active objects; scheduling; distributed
computing; remote object creation; and design by contract.



1.1 Statement of the Problem

Each high-level programming language provides a fixed set of abstractions that pro-
grammers use to design software systems and applications. These core programming
abstractions typically differ little from one general purpose language to another, and
generally offer a low-level, abstract view of a virtual machine. They include support
for representing and naming data objects and structures; typing; procedural abstrac-
tions: functions, function calls, name spaces, argument marshalling; syntactic abstrac-
tions for writing arithmetic and logical expressions and programming flow control.
Object oriented languages offer additional abstractions to support data hiding, data
encapsulation, inheritance, polymorphism, classes, interfaces. Increasing complexity
of software systems demand enhanced productivity, efficiency, and ease of mainte-
nance and continually require programming languages and environments to evolve
and offer better suited and higher level modeling capabilities.

The use of libraries is a well-known technique to extend a language with new features
and functionality. In fact, most of the statically typed mainstream languages keep
basic user-level operating system (O/S) services and abstractions such as streams,
files, file-systems, dynamic memory allocation, processes, threads, interprocess com-
munication, networking, etc., outside the language definition, and instead rely on the
presence of externally linked system and run-time support libraries and standard appli-
cation programming interfaces (APIs) to access them. For example, standard 1/O
libraries extend C language in such a way that most C programmers use and think of
these calls (printf, scanf, etc.,) as if they were part of the C language definition. Java
uses a rich set of libraries (called packages) and APIs to support windowing abstrac-
tions, event-modeling, imaging, etc.,

The library based extension approach is also quite common in interpreted or scripting
languages. Examples of some of the popular and successful cases include Common
Lisp, Tcl, and Perl. Common Lisp extension CLOS provides object orientation sup-
port. Tcl has been extended to provide graphical and windowing support, Tcl/Tk,
object-orientation support, Incr-Tcl. Perl has been extended to provide seamless
access to just about any operating system function.

There are several advantages to the approach of employing libraries to support new
abstractions and functionality: the core language remains more compact and simple
and therefore easier to specify, implement and port to different architectures. The

libraries can be developed and maintained separately and efficiently and in most cases
the libraries can simply be implemented as an indirection layer above the native O/S

services.



The availability of extended functionality in the form of generic, system-level libraries

is very useful, however, the challenges for building large and complex systems still
remain as long as the abstractions offered in the form of library APIs are low level.
General systems and libraries typically offer a rich set of low level APIs to offer
greater control and flexibility. This assigns more responsibility to a programmer to
keep track of state, consistency, and correct usage, and is therefore error prone. The
following is a list of some of the techniques that have emerged in practice to cope with
evolving complexity of software when using low-level abstractions:

* Layering or hierarchical decomposition of libraries and services, —networking
and communication services and protocols, event-handling, windowing systems

» Extending the O/S services to offer more and higher-level user-level APls —
thread, synchronization, scheduling, communication, event-handling, IPC,
graphics, ...

» Supporting platform specific frameworks —MFC, COM, OLE/ActiveX,
VxWorks/Tornado...

 Supporting platform independent frameworks —X, AWT/JFC/Swing, CORBA,
RMI,

* Providing automation toolkits, wizardry, and software engineering tools —IDEs,
CASE Tools, Interface Builders, Beans, ...

» Using Design Patterns [30].

While these techniques offer some help in dealing with complexity they typically
require steep learning curves and a fair amount of commitment to a platform even to
perform fairly simple or common tasks. Additionally these techniques and frameworks
typically do not provide an open or extensible architecture, often requiring going out
of the box and reverting to a custom, more complex solution when there is a paradigm
mismatch.

Finding the right (high) level of programming abstractions is the greatest challenge
with these techniques. The problem is in part due to the fact that the general techniques
are too broad or horizontal, as they cater to as large domains of applications as possi-
ble. Problems start cropping up in vertical, or specialized domains, such as high-per-
formance computing, real-time systems, scalable and collaborative systems with
custom communication needs, etc. Another problem area is in the application domains
of emerging technologies and research environments -- some current examples are
wireless communications, speech recognition, telephony, internet devices, mobile and
ubiquitous computing.

The ideal way to support high-level abstractions to address a particular problem

3



domain is to have direct language support. This approach can provide additional safety
and efficiency. Historically, the following approaches have been used:

1. Design a brand new language to address specific problems in targeted applica-
tion domains and platforms.

2. Extend an existing language with new and non-standard extensions using cus-
tomized compilers, preprocessors, or run-time environments.

Both of these approaches offer custom and dedicated solutions but this in itself may
cause problems. It may be impossible or impractical for programmers to migrate to a
new language and/or development or runtime environment. Maintenance, reliability,

security and future support issues might also hinder acceptance.

In this dissertation we describe techniques for providing an alternative approach:

3. Extend an existing object-oriented language using a purely library based
approach to provide a new set of high-level abstractions.

1.2 Dissertation Research Overview

The key research work conducted as part of this dissertation consists of introducing
new language extensions by designing class libraries for concurrency, distributed
computing and design by contract for the object oriented languages, Eiffel and Java.
We demonstrate that powerful new abstraction capabilities can be introduced without
violating the object-oriented principles or compromising other language or safety fea-

tures, while using a purely library based approach and a set of naming and program-
ming conventions.

We developed techniques to build extensible, open object-oriented libraries that use
and take advantage of the existing lower-level system and vendor libraries, platforms,
frameworks to support several new high-level abstractions. We present the design and
implementation details of the research prototype systems we have developed to intro-
duce the following high-level programming abstractions:

» Concurrency.

* Active objects.

» Asynchronous calls.

» Data driven synchronization.



» Scheduling.
* Active remote objects.
* Remote object creation.

* Design by Contract.

Eiffel is an object oriented language which has built in suppoddsign by contract,

but does not have concurrency features. We have designed and implemented an Eiffel
class library,Class CONCURRENGCYvhich provides concurrency, active objects,
asynchronous calls, data-driven synchronization and scheduling abstractions to Eiffel
objects as encapsulated and inheritable properties. Objects which inherClassn
CONCURRENCYan acquire a separate thread and state and become active with a
programmable scheduler. Active objects’ methods can be called asynchronously with
a deep-copy pass-by-value semantics for normal object arguments and reference pass-
ing semantics for active object arguments. We discuss the concurrency abstractions
and design issues in Chapter 2, and present the implementation detail<tdsthe
CONCURRENCYN Chapter 3.

Java has a basic low-level thread abstraction to support concurrency and has remote
method invocation (RMI) to support distributed remote objects. We have designed and
implemented theéActive-RMIsystem which introduces active objects, asynchronous
calls, data driven synchronization, scheduling and remote object creation to Java. We
have also designed and implemented a reflective Java lifffantractorto introduce

Design by ContractWe discuss the remote active object and design by contract
abstractions and design issues in Chapter 2, and present the implementation work for
Active-RMllibraries in Chapter 4Contractorlibraries in Chapter 5.

Table 1.1 gives a brief summary of the abstractions we have introduced to Eiffel and
Java. We discuss the key abstractions and design issues in Chapter 2. We present the
design and implementation details of tGé&ass CONCURRENCMctive-RMI and
jContractorin chapters 3,4 and 5 respectivghctivator system has not been imple-
mented and is briefly discussed in the future work section of the Conclusion.



Class
ABSTRACTIONS Concurrency
(Eiffel)

Active-RMI | jContractor | jActivator
(Java) (Java) (Java)

Concurrency N N

Active Local Objects

Asynchronous Calls X

Data Driven X
Synchronization

Scheduling

Distributed Computing

Active Remote Objects X

x
X| X|Z2| X| X | X
X X|Z| X| X | X|X|Z2

Remote Object Creation

Design by Contract N

Pre Conditions, Post Conf
. ) X
ditions, Class Invariants

Special syntax (old, X
result)

Exception Handling X

Legend: X = Newly added feature; N = Native language feature

Table 1.1: Overview of Dissertation Research.

1.3 Summary of Research Contributions

Our primary contribution is to have shown by way of designing and implementing
how class libraries and associated programming and naming conventions can be used
to introduce new abstractions to object-oriented languages.

Significant contributions to modeling active objects, concurrency and distributed
object computing were made through the design and implementation of Class CON-
CURRENCY and Active-RMI systems.



We have also introduced design by contract abstractions to Java by designing and
implementing thgContractor system. This work also allowed us to introduce new

techniques using reflection and dynamic class loading to perform runtime instrumen-
tation.

Some more specific contributions are listed in the Conclusion, in the section “Sum-
mary of Key Contributions” .






Chapter 2

Introducing New Features to
Languages using Library Extensions

In this chapter we discuss design issues and techniques for introducing new fundamen-
tal abstractions to object-oriented languages without requiring changes to the language
or its development environment, and without violating the object-oriented principles
or compromising other language or safety features. Our approach is based on design-
ing extensible, open, object-oriented libraries that work with our naming and program-
ming conventions and utilize existing lower-level system abstractions, libraries, and
frameworks. This chapter is organized into three sections discussing our approach and
design issues while introducing three fundamental sets of abstractiomsirrency,
distributed active objectsandDesign by ContractAs part of this dissertation work

we have built three systentStass CONCURRENC? introduce concurrency, active
objects, asynchronous calls, data-driven synchronization and scheduling abstractions
to Eiffel; Active-RMI to introduce asynchronous remote method invocation with
future-type results; asynchronous result delivery; transparent remote-object creation;
active-object semantics; user programmable scheduling and synchronization to Java,
jContractorto introduce Design by Contract to Java. The design and implementation
details of theClass CONCURRENGC ctive-RMIl andjContractor are individually
presented respectively in Chapters 3,4 and 5.

2.1 Introducing Concurrency to Object Oriented Systems

Object-oriented paradigm appears to be well-suited for concurrent programming.
Objects can be used to implement not only data-structures but also processes that are



objects with a protected internal state and a prescribed behavior. The extended view of
objects as processes having a protected private state and a prescribed behavior, pro-
vides the bridge to parallelism, since most approaches in parallel programming are
based on the notion of process. Also the communication/synchronization aspects of
concurrent programming blends well with the basic message passing (or method invo-
cation) model of computation in object oriented programming. Our approach to intro-
ducing concurrency is through supporting #uéive objectandasynchronous remote
method invocatiomvith data-driven synchronizatioabstractions.

There are numerous design considerations that need to be addressed in determining
which concurrency abstractions to support and how to integrate them with the object
model. In Section 2.1.1 we present these issues. Our main concern is that the integra-
tion of concurrency and object-oriented programming should not result in the sacrifice
of the advantages of either or both worlds. Concurrency abstractions should be sup-
ported as natural extensions to the object model that does not violate the principles of
object-oriented programming — such as reusability, data encapsulation, data abstrac-
tion, inheritance, polymorphism. Designing a concurrency class library along with an
object-oriented concurrent progradesign methodind tools to extend an existing
object-oriented language has several advantages, and this alternative should be consid-
ered before any other scheme which involves making modifications to the syntax,
semantics or runtime aspects of the language.

In the Section 2.1.1 we present some of the design issues and approaches taken in
designing concurrent object oriented languages. In Section 2.1.6 we present the advan-
tages of choosing a library based approach for introducing concurrency to Eiffel. A
full description of our concurrency mechanism, and an associated concurrent program-
ming design method describing how a concurrent application can be designed from
sequential object specifications, and how this process can be automated, along with
some examples is discussed in Chapter 3, “Introducing Concurrency to a Sequential
Object-Oriented Language” on page 41 and in [41].

2.1.1 Design Issues for Concurrency Abstractions

The central abstraction for concurrency in most parallel programming systems is the
notion of processor thread of control, which represents a virtual processor executing
instructions within a context. Concurrency implies the possibility of multiple threads
executing in parallel as parts of the same computation. The notion of a single thread of
control already exists (implicitly) in the sequential object-oriented programming. A
single thread starts executing instructions within the context of a 'root’ object, and
each method call (return) of an object’'s method transfer the thread of control to (from)
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the called object. At any given point in time a single thread of control appears to be
executing the instructions within the context of some object one of whose methods has
most recently been invoked.

Following is a list of design issues pertaining tottireadabstraction:
* Is the notion ofctive objectsupported? Otherwise how is an independent (par-
allel) activity thread represented by the object model?
« If the active object notion is supported, how can an object become active?
» Are multiple threadf execution allowed inside an object’s methods?
» What is thegranularity of concurrent access to an object?

* What mechanism is used to ensomaual exclusiomn the presence of multiple
threads?

Following is a list of issues that are related todberdinationof parallel activities:

» How are concurrent threads or activitggmchronized
* How do concurrent threads or activitesnmunicate

* If communication is based on message passing:
Is message acceptanoemessage sendirexplicit?
Is message delivery synchronous or asynchronous?

» What type ofscheduling policiesre supported?

Following is a list of issues related to theguage modednddistributiorn

* Do all objects reside in the samédress space
This issue greatly affects other parts of the design. In particular, message passing
and synchronization mechanisms greatly depend on the presence (or absence) of
a shared memory assumption. Thread abstractions will also be closely related to
the address space assumption.

« If objects can reside at distributed sites, how are object references passed as
parameter8 Do they need to deep-copied? Migrated?

 Can all communication be statically type-checked?
* Do specialibraries exist for extending or refining the concurrency abstractions?
* Whichlanguageis used to express sequential constructs?

» What type of abstractions or concurrency mechanisms are assumed (or expected)
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to be provided by the underlying operating system.

The answers to these questions have a profound affect on the type and amount of con-
currency that is attained by the model. Nearly any combination of these key design
choices exist in the literature.

We have introduced concurrency to the sequential object-oriented language, Eiffel,
with no language extensions or modifications to the compiler by providing special

concurrency classes. Table 2.1, “Overview of Introduced Concurrency Abstractions,”

on page 13 lists the main abstractions and features of our Eiffel concurrency exten-
sions.

A summary of our design decisions for introducing a concurrency model for Eiffel fol-
lowing the guidelines we have discussed earlier in this section is as follows:
» The concurrency approach is based on active objects.

* Only those objects which inherit fro@lass CONCURRENCYan become
active.

» Objects can become active by acquiring an indepeidesadof control when
thesplit method is invoked. Theplit method is inherited from th@lass
CONCURRENCYLibrary).

* Active objects communicate lagynchronous remote invocatiohtheir meth-
ods.

» Synchronization iglata-drivenbased orfuturetype result objects.

» Message acceptance is explicit, achieved by providing a speb&duleroutine
for each active object.

» Each active object supports a single thread of activity.
* All active objects reside at disjoint address spaces, and therefore

* All object references must be deep-copied.
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CONCURRENCY ABSTRACTIONS

Active Object Instantiation & References

Feature

Description

Class CONCURRENCY

Must be inherited for an object to become active.

Create Instantiates the proxy of an active object.

split Creates active object in separate address space & sets
P up connection with the proxy.

attach Connects the proxy with an existing active object.

Asynchronous Call

Feature

Description

REQUEST Class

Encapsulates data and communication parameters of
an asynchronous call, associated with a unique call-id.

remotelnvoke

The proxy takes method name and call parameters,
creates a REQUEST object and asynchronously deliv-
ers it to the attached active object’s request queue.
Returns unique call-id associated with future result of
the call.

Synchronization & Reply Scheduling (Proxy side)

Feature Description
Blocks until result is received for the call associated
claimResult with the given call-id.

Returns the result of the computation.

resultAvailable

Polls the proxy’s result queue. Non-blocking.
Returns true if result is ready for given call-id.

Applies to a FUTURE object. Blocks until result is
received for the call associated with the given

data FUTURE object.
Returns the result of the computation.
Applies to a FUTURE object.

isReady Polls the proxy’s result queue. Non-blocking.

Returns true if result is ready.

Table 2.1: Overview of Introduced Concurrency Abstractions
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CONCURRENCY ABSTRACTIONS

Request Scheduling (Server side)

Feature Description

Server’s queue of incoming REQUEST objects asyn-

requestQueue chronously sent by proxies.

User defined routine defines the behavior of the active
object typically by scheduling incoming requests.

scheduler Scheduling logic can utilize the name and signature of
the operation & the runtime values of the arguments.
getRequest Blocks scheduler code until arrival of new request(s)

or a specified time-out.

Polls request queue about new request(s) without

pendingRequestExists blocking.

Asynchronously sends the result of the current request

sendResult to the responsible proxy.

Table 2.1: Overview of Introduced Concurrency Abstractions

Our choices in addressing the design issues are largely guided by our desire to intro-
duce concurrency to Eiffel using class libraries, and coming up with a concurrency
mechanism that respects object-oriented design principles. Subsequent sections pro-
vide more discussions about the key elements of our design. A detailed description of
the Class CONCURRENC¥xamples, and an automated design method for convert-
ing sequential classes to concurrent classes is presented in Section Chapter 3.

2.1.2 Active Objects

Our view of concurrency is based on the notioprotessand its integration with the
notion ofobject This unification of the notion of a process and object results in the
concept of aractive object Objects can become active only if they inherit from the
Class CONCURRENCY,oncurrency can then be viewed as the parallel execution
resulting from the creation of these active objects and their interactions with each
other.
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Proxy (obj)

_______________________________________

Figure 2.1:. Process State after Create

The Class CONCURRENCHreserves the instance creation semantics of sequential
Eiffel objects. TheCreate method instantiates a sequenpadxy object. The actual
creation of an active object with its oynocess(or thread is achieved by invoking

this proxy object’ssplit  method. This method starts a new process with an indepen-
dent thread of control and returns back to the client afteadtiee objectis created

and communication ports are established and initialized. Then the active object begins
executing a special start-up methedheduler . The methodology requires that the
scheduler ~method is defined for each class that inherits IGGNCURRENCY

This method specifies how to serve the requests generatetielys using the
remotelnvoke  method. All requests are delivered as actual messages to the server
using a transparent inter-process communication (IPC) mechanism. Since multiple cli-
ents can simultaneously request services, the communicabaffesed.

For figures 2.1 and 2.2, assume thigit inherits fromCONCURRENCYFigure 2.1
depicts the situation after ticeeationof theobj's  proxy by executing the following
statement in one afient’s methods:

obj . Create;

Figure 2.2 depicts the situation after the following statement in orleenf's methods
at a later point in the execution:

obj . split;
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_____________________________________________________________

Proxy (obj)

______________________________________________________________

Figure 2.2: Process State afteplit

In both figures, the dotted boxes represent processes residing in distinct address
spaces. Solid arrows are the object references pointing to the circles which represent
the actual objects. The dotted line arrows inside an object in each process represent a
thread executing a method of the object. The dotted line arrows between objects —
represented as circles — correspond to the method call and value return between these
objects. Finally the striped bi-directional arrow between two objects in separate pro-
cesses represent the link between the dedicated communication portspobxijne
server object, and the correspondamgive server object. After aplit , the server

object in the client’s process act apraxy to the actual active server object. This
proxy object transparently and asynchronously relays the requests to the active
server’srequest queyeand returns the results of requests which are asynchronously
delivered to itgesult queudy the server.

Once a server object has been madeve via asplit  operation, new clients that
want to invoke the server’s methods must create their own proxy copies, and use the
attach method to set up the association between the proxy and the active server
object. A reference to the communication port of the active object must be first
obtained from an 'informed’ client, as an argument. Caliingch is significantly
cheaper thasplit , since it doesn't involve creation of a new address space. Using
attach is the only mechanism to share active objects.

2.1.3 Asynchronous Calls and Synchronization

In the sequential object oriented paradigmethod invocatioms asynchronougroce-
dure call, and objects apassiveentities, doing work only when their methods are
invoked. We call the object invoking the methodli@nt, and the invoked object a
server
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The Class CONCURRENCIimplements anon-blocking, asynchronousethod invo-
cation mechanism calle@motelnvoke . Consider the following code wheogj is
anactiveobject,

calllD: INTEGER,;

returnVal:T;

calliD:=obj.remotelnvoke(“method”, arg_list);

Concurrent execution with obj

-- use calllD to obtain the associated result

returnVal ?= obj.claimResult(calllD);

The client thread in this example does not wait for the completiobj'sf execution

of method , but rather concurrently continues executing its own code until the point in

its own execution where it actually needs the result of the executiortiobd . The

part of the client’s code shown with dots above is executpdrailel with theobj's

code. The result returned lejaimResult  conforms to all types, so it is reverse-
assigned to the correct typerefurnval, using the?= reverse-assignment attempt
operator. The typd, of returnval is the actual type returned bygj’s methodfea-

ture. This is a data-driven synchronization scheme, based on asynchronous message
passing, and is referred to as tt-by-necessithy Caromel [18] .

The Class CONCURRENCHrovides two methods to access the resultrefrate-

Invoke . Both of the methods take a single argumengliéD , which is returned by

the corresponding remote invocation. The methgaimResult , as used in the
example of the preceding paragraph, returns the result delivered by the server. If the
result is not available yet, thetaimResult  blocksuntil it becomes available. The
other methodresultReady , is anon-blockingtest for the availability of result of the
remote invocation associated with @eID . All the underlying communication is
encapsulated and hidden from the application. ddiédDs  returned by remoteln-

voke are similar to the ConcurrentSmalltalk’s CBoxes [72] and ABClfiitge type
messagefr3].

Since active objects resides in separate and address spaces, objects that appear as

parameters of remote methods of active objects can not be passed by reference but
must be (deep) copied.
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2.1.4 Future Type Results and Higher Level Abstractions

Theremotelnvoke  method is a low-level abstraction and has the following disad-
vantages:

* Themethod-namargument needs be to passed as a string making standard static
type-checking not possible;

» The method cannot take variable number of arguments, requiring the actual argu-
ments to be stored in a variable-sized array.

The lack of support for reflection, runtime instrumentation or dynamic loading of class
binaries in Eiffel limited our abilities to provide a higher level abstraction that can be
supported directly by the standard language environment. However, in the section
“Generation of Concurrent Class Prototypes from a Sequential Class” on page 51
describe a design method which provides static-type checking, and variable-size argu-
ment passing capabilities for remote invocations which results in a simpler, safer and
more transparent utilization of themotelnvoke  method.

This design method outlines a method to transparentlyeraditeinvoke  using the

same typesafe syntax of a sequential call as shown in the following code example,
whereactive_obj , is an active object designed by applying our design method.
Using future type results provides simpler and more way to transparent access remote
invocation results. Explicit invocation efaimResult  andresultAvailable is

also eliminated by the utilization of theUTUREtype. The FUTUREtype objects
returned by the proxy object are similar to the Concurrent Smalltalk’'s C Boxes[72]
and ABCL/1’s future type messages [73].

future: FUTURE;
returnVval : T;
future:=active_obj.method(argl, arg2...);

concurrent execution with obj

returnVal?=future.data;

--implicit claimResult from active_obj

18



2.1.5 Scheduling

Two types of scheduling are supported by our concurrency mechaemnschedul-
ing andrequest schedulingReply schedulings the control the client has over the
delivery of the reply andequest scheduling the control the active object server has
over the acceptance and service of the requestsRBly schedulings addressed by
theremotelnvoke , claimResult  andresultReady methods as presented in the
previous section. This section describes rbguest schedulingnethods:getRe-
quest , pendingRequest , sendResult , and thescheduler

One of the requirements of the methodology for desigaatige objects is to define a
start-upmethod, calledcheduler . Thesplit call transfers control to thechead-

uler method of the target active object. Tdsudeduler has exclusive access to the
concurrency related internal state of the active object, and specifies the behavior of the
activeobject.

Message acceptancedsynchronousindexplicit Acceptinga message is separated
from actuallyservingthe request. Thus the model provides a powerful mechanism for
dealing withlocal delayswhich is deemed essential in Liskov et al.’s [46] formulation
of concurrency requirements for developing client/server type distributed programs.

A queue of request messages, calbeiest_queue is created for each active object

to store all accepted requests from client objects. Messages delivered to the communi-
cation buffer, but not yet accepted into teguest queue are calledpending
requests. Each entry in the queue contains all of the parameters of the client's remote
invocation request, including italllD  and reply address. The server object explic-

itly needs to show intent to accept messagetRequest is a potentiallyblocking

call that commits all pending requests into thguest_queue , and blocks if no
pending request exists until the first one arrives. mbe-blockingvariant of this
method is the@endingRequest method.

The scheduler has unrestricted access to thquest_queue , and it can inspect

the parameters and names of the requests in the queue in order to select and serve one
of them. It can also choose to wait for a certain type of request to arrive, or a certain
condition before it selects a request for service. Sending a result back to a client after
the service of a request is also dasynchronouslyand explicitly, using thesen-

dResult primitive.

Since there is a single execution thread inside ealtdduler , the execution of all
incoming requests are serialized. This also applies to the passive objects within each
process, since no sharing of passive objects is possible due to the deep copy semantics
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of arguments ofemotelnvoke  method. Therefore all requests to the methods of a
passive object are also serialized. This eliminates the need for synchronization inside
the methods of objects and allows us to have all synchronization points correspond to
communication events.

2.1.6  On Designing Libraries to Introduce Concurrency

Some of the advantages of designing class libraries to introduce concurrency to a
sequential object-oriented language are listed below

* Libraries provide a morexible andextensiblesolution for concurrency since
they can be tailored to the specific needs and characteristics of the target operat-
ing system and hardware by modifications or refinement of the libraries. Concur-
rency abstractions that are hard-wired into the language may be impractical or
impossible to change. A similar analogy exists in the operating system research.
It is more desirable to implement smaller (micro) kernels that move a lot of the
traditional kernel abstractions and services out of the kernel (and implement as
application-level processes) in favor of reduced complexity and size and
enhanced flexibility — even though it might have been more efficient to provide
these services within a larger, monolithic kernel.

It is important thateuse of sequential librariesan be supported after concur-
rency is introduced. Radical changes to the language and the object model may
render existing sequential code obsolete. Whereas, extensions through libraries
will support the design of sequential objects in much the same way it was before
concurrency is introduced. Henisabilityis improved since existing sequen-

tial code can be incorporated into a concurrent application easily.

It is morepractical andeasierto design and maintain a concurrency library than
inventing a new concurrent object-oriented language, or modifying an existing
languageandits compiler (even when there are compilers available for modifica-
tions).

By using a strictly object-oriented technique — designing reusable class libraries
— to introduce concurrency and keeping the original language in tagtitice

ples of object-oriented programming and desage respected. Adding concur-

rency through modifying the language may add a great deahgblexityand
restrictions to its future evolution. It might even be impossible or difficult to port
the language to new hardware or operating system platforms with the added con-
currency specifications. Libraries offer a modular and robust mechanism for sup-
porting constantly evolving hardware and O/S platforms.

20



* Object-oriented libraries support user level extensions.

* Object-oriented libraries can support systematic layered views allowing different
levels of abstractions to be delivered to different types of users. While the casual
user can use the high-level abstractions of concurrency, more sophisticated users
can use (antkus@ the entire library, with all of its lower-level abstractions (such
as IPC, O/S interaction, etc.,.) and extend or design new higher-level abstrac-
tions.

* Designing libraries for concurrency can help designer from fully committing to a
specific style of concurrency. September 1993 issue of the Communications of
the ACM contains 4 different proposals for introducing concurrency to Eiffel lan-
guage [19], [41], [48], [55], all with quite distinct approaches.

*» Usersare less likely to switch to a non-standard language extension that is cus-
tomized for concurrent programming especially if switching would require also
switching (or abandoning) tools and existing libraries, whereas library based
extensions can be easily incorporated to the user’s programming environment.

* Library based approaches can be geifieientsince all concurrency and syn-
chronization abstractions must eventually be derived from or mapped onto under-
lying platform dependent operating system resources and services.

Some issues are harder to deal with when designing libraries. Static type-checking of
objects is a problem for communication. Details of having to explicitly initialize or set

up communication and provide stub generation, etc. may seem as the disadvantages of
the library approach. Along with our library based extension, we provide the program-
mer with a design method that prescribes how to automatically extend sequential
classes to concurrent ones, generate proxies and type-safe stubs for communication,
and synchronization (for details see Chapter 3: “Introducing Concurrency to a Sequen-
tial Object-Oriented Language” on page 41) Buhr et.al.[15] mention some problems
with library design for introducing concurrency, but their arguments are mostly per-
taining to the context of the concurrency mechanism they adopted for uC++ [14], a
C++ extension.

2.2 Distributed Object Abstractions

In section 2.1 we have presented @lass CONCURRENCH¥ library based approach

to introduce concurrency to a sequential language, Eiffel. In this section, we discuss a
similar technique to introduce new distributed computing abstractions to Java: the
Active Remote Method Invocatiepstem Active-RMI).
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2.2.1 Background: Distributed Object Computing

Development and acceptance of open communication standards and protocols have
made it feasible and a practically possible to interconnect the tremendously diverse
heterogeneous computers and operating systems under a unified framework, the Inter-
net. Open standards and widely accepted protocols such as low-level TCP/IP, UDP/IP
[68] or higher level protocols such as HTTP, FTP, RPC[9], etc., make it relatively easy
to develop networking and communication oriented software in which the emphasis is
either on exchange or streaming of well-structured data/messages, or requesting
remote services with well-known interfaces. Such programs are typically tedious and
require a programmer to parse and map the message stream to the application seman-
tics explicitly, usually in a platform and language specific fashion. This approach
works well for such tasks as basic information retrieval, web-browsing, chatting.

Distributed computings a more encompassing form of programming which uses net-
working and communication to enhance a local computation by potentially distribut-
ing portions of the computation among different hosts; or to collaborate with other
executing programs towards accomplishing a global task. What makes distributed pro-
gramming challenging is the semantic gap between programming language semantics
involving local and remote computations and the communication abstractions. Distrib-
uted programs require higher levels of abstractions then TCP/IP or other basic net-
working protocols. Certain standards and tools have been emerging recently that help
programmers write language independent “abstract” interface specifications that can
be implemented separately, potentially in different languages through different lan-
guage bindings. The separation of interface from implementation reduces greatly the
complexity the programming of the communication and inter-operability requirements
especially in a heterogeneous environment, but the semantic gap between local and
remote computation still needs to be explicitly solved by the programmer. Some
examples of well-adopted tools and standards for distributing programming are: lower
level mechanisms such as RPC[9] DCE[59] or object-based distribution protocols
such as CORBA[60], RMI[70], ILU[35], HORB[67] or DCOM[10]. All of these sys-
tems add a distribution layer on top of a general purpose programming language sys-
tem: an intermediateterface definition languagé@lDL) and an IDL-to-application
language tool is provided to support creation of remote stubs/proxies, and for register-
ing or locating remote interface implementation objects/servers. Other less popular or
experimental solutions exist as research prototypes of distributed operating systems
such as Sprite[27], Inferno[49] that support a distributed scope and access primitives
as operating system functions; or languages specifically designed for distributed appli-
cations such as Emerald[36], Telescript[69], Agent-Tcl[32].
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2.2.2 Design Issues and Active-RMI Approach

The Active Remote Method Invocatiepstem(Active-RMlI)is a set of class libraries,
tools, and a design method which provides high-level abstractions for building distrib-
uted Java applications based on the notioactive remote object#\ctive-RMlis a
natural extension of our work involving introducing concurrency extensions to Eiffel
language using class libraries[4Active-RMIis implemented as an extension to the
Java RMIsystem which was integrated by Sun Microsystems into the Java Lan-
guage[31] with the release of JDK 1.1. The key contributiodsctVe-RMIsystem to
distributed computing is the extensionJava-RMIwith the following features, which

are explained in greater detail in Chapter 4: “Active-RMI: Asynchronous Remote
Method Invocation System for Distributed Computing and Active Objects” .

1. Asynchronous remote method invocation with future-type results

2. Asynchronous result delivery from the server to the caller.

3. Remote-object creation by the client via transparent class exporting/uploading.
4. Active-object semantics for remote objects created usitige-RMIprotocol.

5. User programmed scheduling and synchronization of remote method invoca-
tions.

Table 2.2, “Overview of Introduced Distributed Computing Abstractions.,” on page 24
provides a general outline of our approach. Ugintive-RMIlone can write complete

class specifications in Java describing remote active-object interfaces and implementa-
tions, designate remote hosts (or brokers), and remotely create or discover new active-
objects on the participating remote hosts. Upon creation or discovery of an active
remote-object, aActive-RMIprogram can reference and synchronously or asynchro-
nously remote invoke its public methods using the same syntax as if it were a local
Java object. Remote hosts need to be active and willing participantsAnotihe-RMI
protocol, but they do not need to have a-priori knowledge of the types of active objects
that they will host, ag\ctive-RMIprotocol transparently exports the needed class defi-
nitions in a demand-based fashion. Remotely created objects are started as autono-
mous agent-like objects, with a thread executing a designated method of the object,
which can also access a private request queue of incakoinge-RMIrequests from
clients.

2.2.3 Active Remote Objects

We use the termctive objecto describe an object which has an independent thread,;
has access to a dedicated request queue of incoming method invocation requests; and
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has the ability to inspect, select and serve any of the requests in its request queue.
Active-RMIsystem extends the Java object model by giving active objects autonomy
over how and when to respond to their clients’ requests. Each active objects is created
with its dedicated servescheduler  thread, and aictive-RMI request queudn
Active-RMiIserver utility creates each active object with its request cuedi@ dedi-

cated thread and then returns a remote-stub reference to the client which requested the
active remote object’s creation. Clients access the reAuiiee-RMIobject using a

Java RMIcompatible remote object reference. The active object’s thread begins exe-
cution in itsscheduler  method.

DISTRIBUTED COMPUTING ABSTRACTIONS

Remote Server location and remote object creation

Feature Description

Allows a client to lookup or transparently
aRmiServer interface create active objects on the remote server.

Allows a client to lookup or transparently
createRemoteObject method create active objects on the remote server.

Active Remote Objects & Dynamic Class Exporting

Feature Description

Used to create active remote objects.
Uses RMI remote reference layer, com-
munication subsystem, provides a request
queue & default (FIFO) scheduler

UnicastActiveRemoteObject
class

Used transparently by the createRemo-
teObject method for exporting referenced
classes to the remote server.

ClassExporter interface&
implementation class

Table 2.2: Overview of Introduced Distributed Computing Abstractions.
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DISTRIBUTED COMPUTING ABSTRACTIONS

Asynchronous method invocation and synchronization

Feature

Description

_Stub classes

Used transparently by clients to make
asychronous remote method calls.

The stub object creates and forwards a
request object for each call and returns a
call id without waiting for result.

aRmi_Request

Encapsulates an active-RMI call. Con-
tains unique call-id, method identifiers
and serialized call arguments.

A unique call-handle is transparently cre-
ated and placed in call registry for each

CallHandle  class

asynchronous call.

Blocking method of the call-handle
getResult method object to return the call result.

Non-blocking method of the call-handle
resultReady method object to check call result availability.

Active-RMI Server, naming and registry services

Feature

Description

aRmiServer

mentation class

interface& imple-

Standalone server application object pro-
viding remote active object creation,
naming and registry services.

aRmiSecurityManager

class

Default security manager allowing
dynamic class loading & thread groups.

aRmiClassLoader class

Required class loader for importing
active remote object classes.

Table 2.2: Overview of Introduced Distributed Computing Abstractions.



DISTRIBUTED COMPUTING ABSTRACTIONS

Active Remote Object instantiation.

Feature Description
The implementation class corresponding
to each active object that gets created on
_Skeleton  classes

the server with a private request queue
and scheduler.

aRmi_RequestQueue

Private, dynamically updated queue of
incoming Active-RMI Requests.

scheduler  method

The designated method of each active
remote object where execution starts
upon creation.

User programmable method defines the
behavior of the active object.

Request scheduling, dispatching and synchronization.

Feature Description

Request Queue method which blocks
waitForRequest method scheduler thread until arrival of new

request or time-out.

Request Queue method returning first
getFirstRequest, (last) request object in request queue with
getLastRequest methods matching criteria. Request gets dequeued.

Request Queue method returning first
peekFirstRequest, (last) request object in request queue with
peekLastRequest methods matching criteria. Request queue is not

altered.
getMethodSignature method Requggt object method returr]mg' String

containing requested method’s signature.

Array component of Request object con-
args taining array of serialized objects corre-

sponding to actual call arguments.

serve method

Request object method that dispatches the
request.

Dispatch implicitly sends result back to
caller.

Table 2.2: Overview of Introduced Distributed Computing Abstractions.
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2.2.4 Asynchronous Remote Calls and Call Handles

All calls to Active-RMIobjects are asynchronous. A client object initiates a remote call
by transparently invoking the corresponding stub method. The stub method creates a
request object for the remote call, marshalling the method descriptor, serialized argu-
ments and a unique call identifier. The stub registers the request object with a user
level client-side callregistry and asynchronously sends the request object to the
remote server. Stub method returns the call identifier without waiting for the result
back from the remote server.

The client obtains aall handleassociated with tha&ctive-RMIrequest by looking up

the call registry entry using the call identifer returned by the stub method. Client can
access the result of the remote method’s execution only using the call-handle and its
interface functions:

* getResult : for blocking receive

* resultReady : for non-blocking querying

2.2.5 User Programmable Scheduling and Synchronization

In Active-RMlactive object model, each request to the active remote object is deliv-
ered as araRmi_Request message object into the target object’s private request
pool, RequestQueue . There are no service guarantees, or an implicit order in which
the arriving messages will be served. Each active object is created with its private
RequestQueue , and uses the thread executingsitseduler to decide how to pro-

cess requests placed into the queue. 3tteeduler method, however, is not
restricted to performing only scheduling activities. It can perform general purpose
computations and engage in agent-likebehavior. The active object’s scheduling
thread accesses th&equestQueue directly and peek into the queue of
aRmi_Requests , and implement a selection policy to choose and serve one of the
requests in the queue. The scheduling policy can involve inspecting each request’s
type, or its method signature, or the values of its actual arguments. The scheduler
thread may also decide not to serve any of the current requests in the queue; or may
wait until a certain event takes place, or a certain request arrives. A simple LIFO
scheduler  code, enforcing a last-in-first-out style servicing of its request queue is
shown below in Figure 2.3.
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private void Scheduler()
throws java.rmi.RemoteException,Exception
{
while(true) {
while (IRequestQueue.empty()) {
aRmi_Request currentRequest =
RequestQueue.getLastRequest();
currentRequest.serve();

}

RequestQueue.waitForRequest(); // blocking call

Figure 2.3: A LIFO Scheduler Implementation

2.2.6 Remote Active Object Creation

A specialActive-RMlserver process, implementing thRmiServer interface needs

to be running on a server host in order for a client application to be able to remote-cre-
ate active-RMI objects on that host. A new active remote object can be created on the
remote host viareateRemoteObject method which returns a remote stub refer-
ence to the newly created active object. WithoutAbgve-RMlserver process run-
ning, a local object can still create active objects on its own host and export them to
clients possibly residing on different hosts, but clients on remote machines will not be
able to directly connect to this host and create active remote objects onActive

RMI server process is registered using stanévtd registry mechanism using the
name ‘aRmiServét Client applications can locate and obtain remote object refer-
ences to the server using the stangmararmi.Naming utility:

aRmiServer rHost = (aRmiServer)java.rmi.Naming.lookup(

"//hostName/aRmiServer");

Active-RMl class libraries provide an implementation clag®smiServer_Impl,

which implements thaRrmiServer interface. This class can be used to instantiate

an Active-RMlserver object as part of an application. Alternatively, a command-line
utility, aRrmiServer, is provided and can be started independently at each host
offering the Active-RMI remote object creation service.
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The primary function of théctive-RMIserver object implementing t&miServer

interface is to facilitate remote object creation. It providesié®eRemoteObject

method, used by clients to spawn new active remote objects on the host server, and
returns anActiveRemote  object reference, a subtype jafa.rmi.Remote . The
returned reference acts as a proxy to the actual remote object: client’s invocation of the
proxy’s methods are handled as asynchrorftsre-RMIrequests, executed on the
remote host.

Two variants otreateRemoteObject are defined. Both can be invoked with a sin-
gle string argument, which  contains the implementation class path of the active
remote object implementation:

* createRemoteObject( String classNam
¢ createRemoteObject( String classNamgeClassExporter ce)

The latter form is typically used transparently by the stub implementation of the
Active-RMI Servewbject. If the server cannot find some of the classes locally, it
throws an exception forcing the client’s stub to paStssExporter  object. When

the client responds by passing a class exporter object, a new class d&adier,
ClassLoader, is created and installed transparently by the server utilizing the
remote class exporter object received from the client to download required client-side
classes and create the active object on the server. In order to facilitate the need for
installing a new class loader as requiredAayive-RMIremote object creation proto-

col, theaRmiServer process useActive-RMIs security managegRmiSecurity-

Manager, which allows installing new class loaders. Finally, #femiServer

process handling thereateRemoteObject request creates the active object
requested by the client, exports it using the RMI remote reference layer and returns a
stub reference to the client. For more details see section “Remote Object Creation And
Distribution” on page 66.

2.2.7 Request Scheduling and Server Synchronization

Each request to an active objects gets queued irRetpiestQueue as an
aRmi_Request object which represents the client’'s remote method invocation in the
form of a message containing the type and signature of the method and the serialized
arguments listargs , in the form of anObject array. While executing inside the
scheduler  method, the active object can examineRitgjuestQueue by peeking

into the request objects. The scheduler thread can make selection decisions based on
the signature of the requested method, or the contents of its actual parameters. The
request gets served by invoking thesidsve method:

29



thisRequest.serve();

which executes the target method of the current active object with the actual argu-
ments, and then asynchronously sends the request back to the client which had
invoked the remote method.

The RequestQueue supports the standajava.util.Enumeration interface to
allow iterations over its elements as well as providing several convenience functions:

getFirst();

getFirst(String signature);
getLast();

peekFirst() & peekLast()

Further synchronization methods provide waiting behavior which block until a partic-
ular request type arrives into tRequestQueue :

waitForRequest(); I/l any request
waitForRequest(String signature);// request w/matching sig.

EachActive-RMIrequest object is associated with a thread which has been suspended
just before it began to execute the target method with the passed arguments. Once a
decision is made to serve the request, the thread can be resumed by:

More design and implementation details of the Active-RMI system are discussed in
Chapter 4, “Active-RMI: Asynchronous Remote Method Invocation System for Dis-
tributed Computing and Active Objects” on page 61.

2.3 Design by Contract Abstractions

In sections 2.1 and 2.2 we have presented respectively two library based extension
techniques: th€lass CONCURRENCY0 introduce concurrency to a sequential lan-
guage, Eiffel, and\ctive-RMIto introduce new distributed computing abstractions to
Java In this section we introduce our third research syst@antractor, a purely
library-based system which introduces Design by Contract abstractions to Java. The
jContractor system also relies on a set of naming conventions and utilizes the dynamic
class loading and reflection capabilities of Java.
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2.3.1 Background: Design by Contract

One of the shortcomings of mainstream object-oriented languages such as C++ and
Java is that class or interface definitions provide only a signature-based application
interface, much like the APIs specified for libraries in procedural languages. Method
signatures provide limited information about the method: the types of formal parame-
ters, the type of returned value, and the types of exceptions that may be thrown. While
type information is useful, signatures by themselves do not capture the essential
semantic information about what the method does and promises to deliver, or what
conditions must be met in order to use the method successfully. To acquire this infor-
mation, the programmer must either analyze the source code (if available) or rely on
some externally communicated specification or documentation, none of which is auto-
matically checked at compile or runtime.

A programmer needs semantic information to correctly design or use a class. Meyer
introduced Design By Contract as a way to specify the essential semantic information
and constraints that govern the design and correct use of a class [51]. This information
includes assertions about the state of the object that hold before and after each method
call; these assertions are caltgalss invariantsand apply to the public interface of the
class. The information also includes the set of constraints that must be satisfied by a
client in order to invoke a particular method. These constraints are specific to each
method, and are callgmeconditionsof the method. Each precondition specifies con-
ditions on the state of the object and the argument values that must hold prior to invok-
ing the method. Finally, the programmer needs assertions regarding the state of the
object after the execution of a method and the relationship of this state to the state of
the object just prior to the method invocation. These assertions are calfEabtben-

ditions of a method. The assertions governing the implementation and the use of a
class are collectively called @ntract Contracts are specification constructs which

are not necessarily part of the implementation code of a class, however, a runtime
monitor could check whether contracts are being honored. An example of a contract is
shown in a language independent form in Table 2.3, “Contract Specification for Insert-
ing Element to Dictionary,” on page 32. This example shows the informal contract
specifications for inserting an element into thetionary, a table of bounded capacity
where each element is identified by a certain character string used as key.

2.3.2 Design by Contract Library for Java
We have introduce®esign By Contracto Java byContractor, a purely library-based

system and a set of naming conventions. jChetractor system does not require any
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special tools such as modified compilers, runtime systems, modified JVMs, or pre-
processors, and works with any pure Java implementation. Therefore, a Java program-
mer can usg¢Contractor library and follow a simple and intuitive set of conventions to
practiceDesign By Contract

Design By Contract Example: Dictionary

Obligations Benefits

(Must ensure precondition) | (May benefit from postcondition)

Client Make sure table isot full& | Get updated table where the given
key is anon-emptystring element now appears, associated
with the given key.

(Must ensure postcondition) (May assume precondition)

Supplier Record given element in No need to do anything if table
table, associated with given given isfull, or key isemptystring.
key.

Table 2.3: Contract Specification for Inserting Element to Dictionary

Each class and interface in a Java program corresponds to a translation unit with a
machine and platform independent representation as specified by the Java Virtual
Machine (JVM)class file format [45]. Each class file contains JVM instructions
(bytecodes) and a rich set of meta-level informatioontractor utilizes the meta-level
information encoded in the standard Java class files to instrument the bytecodes on-
the-fly during class loading. During the instrumentatioontractor parses each Java
class file and discovers theontractor contract information by analyzing the class
meta-data.

2.3.3 Design Issues and jContractor Approach

The jcontractor design resolves three key design issues when adding contracts to Java:

* how to express preconditions, postconditions and class invariants and incorporate
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them into a standard Java class definition;

 how to refer to (old) entry values of members or arguments, and to check method
results when writing postconditions using standard Java syntax; and

* how to check and enforce contracts at runtime.

An overview ofjContractor's approach to solving these problems is given below:

» Programmers add contract code to a class in the form of methods foljoaring
tractor's naming conventionsontract patternsThejContractor class loader rec-
ognizes these patterns and rewrites the code to reflect the presence of contracts.

 Contract patterns can be inserted either directly into the class or they can be writ-
ten separately ascntract classvhere the contract class' name is derived from
the target class usingontractor naming conventions. The separate contract class
approach can also be used to specify contracts for interfaces.

* jContractor finds thecontractpatternsduring class loading or object instantiation
by utilizing the meta-level information found in Java class files and by taking
advantage of dynamic class loading in order to perform "reflective"”, on-the-fly
bytecode modification.

» Programmers enable the run-time enforcement of contracts either by engaging
the jContractor class loader or by explicitly instantiating objects fromjttvatrac-
tor object factory. Programmers can use exactly the same syntax for invoking
methods and passing object references regardless of whether contracts are
present or not.

* jContractor US€S an intuitive naming convention for addimgconditions, post-
conditions class invariantsrecoveryandexception handlingn the form of
protected  methods. Contract code is hence distinguished from the functional
code. The name and signature of each contract method determines the actual
method with which the contract is associated.

* Postconditions and exception handlers can accesédialue of any attribute
by using a special object referenc®,0 For exampleOLD.count returns the
value of the attributeount just prior to the execution of the methgchntractor
emulates this behavior by transparently rewriting class methods during class
loading so that the entry values®@£Dreferences are saved and then made avail-
able to the postcondition and exception handling code.

* jContractor provides a class&yESULT, with astatic boolean method,Com-
pare. In a postcondition it is possible to check tesultassociated with the
method's execution by callimRESULT.Compare(<expression>) . A trueor
falseis returned based oncomparing the valueexpression>  with the result.

33



2.3.4 jContractor Library and Contract Patterns

Table 2.4, “Overview of jContractor Design By Contract Abstractions,” on page 34
contains a summary of key Design By Contract abstractions and the corresponding
jContractor patterns. One of the key contributionsjoéntractor is that it supports all
Design By Contract principles usingpare-Java library-basedapproach. Therefore,

any Java developer can immediately start using Design By Contract without making
any changes to the test, development, and deployment environment after obtaining a
copy ofjContractor classes.

DESIGN BY CONTRACT ABSTRACTIONS

Pre-Conditions

Pattern Description

Method evaluating a boolean result based
on the same arguments & object state at
the time ofmethodNamévocation.
Instrumented code fanethodNamevith
matching signature executes the pre-con-
dition method before executing body.
Reports error and aborts method if pre-
condition method returns false.

methodName_PreCondition

Post-Conditions

Pattern Description

Method evaluating a boolean result based
on the values of arguments & object state
at the time whemethodNameeturns
without an exception condition.

Special OLD & RESULT state can be
accessed in evaluating post-condition.
Instrumented code faonethodNamevith
matching signature executes the pre-con-
dition after method body is executed.
Reports error and aborts method if post-
condition method returns false.

methodName_PostCondition

Table 2.4: Overview of jContractor Design By Contract Abstractions
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DESIGN BY CONTRACT ABSTRACTIONS

Class Invariants

Pattern

Description

className_ClassInvariant

Method evaluating a boolean result based
on the object state at the time of invoca-
tion of each public method and immedi-
ately upon successful return from the
method.

Instrumented code for each public
method executes the class invariant
method before and after executing the
method body.

Reports error and aborts method if class
invariant method returns false.

Exception Handling

Pattern

Description

methodName_OnException

Method that gets called whenethod-
Name's execution endabnormally
throwing an Exception.

The exception handler provides an
opportunity for doing recovery by restor-
ing invariants, resetting state.

Accessing OLD state & RESULT

Pattern Description
Expression evaluates walueof attr
or result of method m() on method entry.
oo & e et
oLD.m(...) P P

methods.
Instrumented code for the target method
records OLD values on method entry.

RESULT.compare(<expr>)

Expression evaluates te if the result
evaluated by the method body is equal to
the expression.

RESULT references can only be used
inside postcondition methods.
Instrumented code for the target method
records the value of the result just before
method body returns.

Table 2.4: Overview of jContractor Design By Contract Abstractions



DESIGN BY CONTRACT ABSTRACTIONS

Reflection Based Runtime Instrumentation

Instrumentation of classes is performed
on compiled class byte codes on-the-fly
by the jContractor class loader.
jContractorClassLoader Instrumentation logic is based on using
reflection to search contract patters in the
meta-level data found in standard Java
format class bytecodes.

Instrumentation of designated classes can
be performed on compiled class byte
codes on-the-fly by explicitly instantiat-
ing objects from jContractor Factory.
Instrumentation logic is the same one
used by the intrumenting class loader.

jContractorFactory

Table 2.4: Overview of jContractor Design By Contract Abstractions

2.3.5 Adding Contracts to Java Programs

A programmer writes a contract by taking a class or method nameuusayhen
appending a suffix depending on the type of constraint, BesCondition , to write

the put_PreCondition. Then the programmer writes the method body describing
the precondition. The method can access both the argumentspi tmeethod with

the identical signature, and the attributes of the class. \Whetactor instrumentation

is engaged at runtime, the precondition gets checked each tinpettheethod is
called, and the call throws an exception if the precondition fails.

The code fragment in Figure 5.1 on page 88 shoj@sraractor based implementation

of theput method for theDictionary  class. An alternative approach is to provide a
separateontract classDictionary CONTRACT , as shown in Figure 5.2, which con-

tains the contract code using the same naming conventions. The contract class can
(optionally) extend the target class for which the contracts are being written, which is
the case in our example. For every class or intevtabat thejcontractor ClassLoader

loads, it also looks for a separate contract clEisSONTRAGTand uses contract spec-
ifications from bothX andX_CONTRACTif present) when performing its instrumenta-

tion. The details of the class loading and instrumentation will be presented in
subsequent sections.
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2.3.6 Interaction Of Contracts With Inheritance And Polymorphism

Contracts are essentially specifications checked at run-time. They are not part of the
functional implementation code, and a "correct" program's execution should not
depend on the presence or enabling of the contract methods. Additionally, the excep-
tions that may be thrown due to runtime contract violations are not checked excep-
tions, therefore, they are not required to be part of a method's signature and do not
require clients' code to handle these specification as exceptions. In the rest of this sec-
tion we discuss the contravariance and covariance issues arising from the way con-
tracts are inherited.

The inheritance of preconditions from a parent class folws$ravariance as a sub-

class provides a more specialized implementation, it should weaken, not strengthen,
the preconditions of its methods. Any method that is redefined in the subclass should
be able to at least handle the cases that were being handled by the parent, and in addi-
tion handle some other cases due to its specialization. Otherwise, polymorphic substi-
tution would no longer be possible. A client ¥fis bound by the contractual
obligations of meeting the precondition specificationX.df during runtime an object

of a more specialized instance, say of cMga subclass oX) is passed, the client's

code should not be expected to satisfy any stricter preconditions than it already satis-
fies for X, irrespective of the runtime type of the object.

jContractor Supports contravariance by evaluating thegical-OR of the precondition
expression specified in the subclass with the preconditions inherited from its parents.
For example, consider the following client code snippet:

/I assume that class Y extends class X

X X;

Yy =new Y(); /l'Y object instantiated

X=Y,; /I x is polymorphically attachetb a Y object
inti=5; ...

x.foo(i); /l only PreCondition(X,[foo,int i]) should be met

When executing.foo(), due to dynamic binding in Java, tfe®() method that is
found in class Y gets called, since the dynamic type of the instance igcdhitthctor
is enabled this results in the evaluation of the following precondition expression:

PreCondition(X,[foo,int i]) 0 PreCondition(Y,[foo,int i])
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This ensures that no matter how stieteCondition(Y,foomight be, as long as the
PreCondition(X,fooholds true x.foo()  will not raise a precondition exception.

While we are satisfied with this behavior from a theoretical standpoint, in practice a
programmer could violate contravariance. For example, consider the following pre-
condition specifications for thleo() method defined both in X and Y, still using the
example code snippet above:

PreCondition(X, [foo,inta]): a>0 ()
PreCondition(Y, [foo,inta]): a>10 (1

From a specification point of vieWll) is stricter than(l), since for values of:a
O<a<=10, (I1) will fail, while (1) will succeed, and for all other values ofly,and(ll)

will return identical results. Following these specifications, the call of previous exam-
ple:

x.foo(i); /I where iis 5

does not raise an exception since it m&eeCondition(X,foo,int a)However, there is

a problem from an implementation view, that Y's metfagint a) effectively

gets called even though its own precondition specificaflon,is violated. The prob-

lem here is one of a design error in the contract specification. Theoretically, this error
can be diagnosed from the specification code using formal verification and by validat-
ing whether followindogical-implicationholds for each redefined method) :

PreCondition(ParentClass,m)/ PreCondition(SubClass,m)

For the previous example, it is easy to prove thaloes not logically-implyll). It is
beyond the scope @fontractor to do formal verification for logical inference of speci-
fication anomalies, jcContractor does, however, diagnose and report these types of
design anomalies, where any one ofltdggcal-ORed precondition expressions evalu-
ates tdfalse In the above examplggontractor would throw an exception to report that

the precondition has been illegally strengthened in the subclass, thus forcing the pro-
grammer to correct the precondition.

A similar specification anomaly could also occur when a subclass strengthens the par-
ent class's invariants, singeontractor checks the class invariants when preconditions
are evaluated. The subclass' invariant's runtime violation is caugjttohwactor
instrumented code as an exception, with the correct diagnostic explanation.

The inheritance of postconditions is similar: as a subclass provides a more specialized
implementation, it should strengthen, not weaken the postconditions of its interface
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methods. Any method that is redefined in the subclass should be able to guarantee at
least as much as its parent's implementation, and then perhaps some more, due to its
specializationjcontractor evaluates théogical-AND of the postcondition expression

found in the subclass with the ones inherited from its parents. Similar anomalies as
discussed above for preconditions can also appear in postcondition specifications due
to programming errorgContractor will detect these anomalies should they manifest
during runtime execution of their respective methods.

2.3.7 Factory Style Instrumentation Issues

When factory style instrumentation is usgintractor constructs a contractor subclass

as a direct descendant of the original base class. Therefore, it is possible to pass
objects instantiated using the instrumented subclass to any client expecting an instance
of the base class. Other than enforcing the contract specifics, an instrumented subclass,
sayFoo_Contractor, has the same interface as the base ckass,and type-wise
conforms toFoo. This design allows the contractor subclasses to be used with any
polymorphic substitution involving the base class. Consider the class hierarchy shown
in Figure 2.4:

Foo

N

Foo_Contractor SpecializedFoo
SpecializedFoo_Contractor
Figure 2.4: Example jContractor Factory Class Hierarchy

jContractor allows for the polymorphic substitution of eith&vecialFoo objects or
the instrumentedSpecialFoo_Contractor objects with Foo objects.the instru-
mentedSpecialFoo_Contractor objects withFoo objects.
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2.4 Summary

In this chapter we introduced three bodies of original research work we have con-
ducted to introduce new language extensions for concurrency, distributed computing
and design by contract for the object oriented languages, Eiffel and Java. We dis-
cussed design considerations and techniques to build extensible, open, object-oriented
libraries that use and take advantage of the existing low-level system and vendor
libraries, platforms, frameworks to support these new language extensions. These
high-level programming abstractions are provided to a programmer by following our
naming and programming conventions. The design and implementation details of the
Class CONCURRENCYActive-RMI and jContractor are individually presented
respectively in Chapters 3,4 and 5.

40



Chapter 3

Introducing Concurrency to a
Sequential Object-Oriented Language

3.1 Introduction

The work described in this chapter introduces concurrency to the object-oriented lan-
guage Eiffel by providing a set ofass librariesand an associated design methodol-
ogy. The concurrency mechanism we provide is well-suited for client/server style
distributed applications. Since no changes are made to the Eiffel Language [53], or its
runtime system, the essential principles of sequential object-oriented programming
offered by Eiffel are not sacrificed. We present our concurrency abstractions as encap-
sulated behavior of Eiffel objects, that can be inherited fromCass CONCUR-
RENCY

The main concurrency abstractions provided by our mechanism are objects as pro-
cesses —active objects— and asynchronougmote method invocatiowith data-

driven synchronizationThe Class CONCURRENCahcapsulates the high-level con-
currency abstractions and provides them to objects through inheritance. In addition to
the class libraries we also developatkaign methodhich promotes: (1) incremental
development, (2) stepwise refinement of active objects from ordinary sequential Eiffel
objects, (3) utilization of existing Eiffel software Libraries. This design method views
objects as the unit of design, and facilitates key object-oriented principles such as reus-
ability, data encapsulation, and extensibility.

We have discussed the fundamental concurrency abstractions in Chapter 2, therefore
we will summarize the key points in the next section, and in the subsequent sections
present the design and implementation details oCthes CONCURRENCY Sec-
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tion 3.5.1, “Generation of Concurrent Class Prototypes from a Sequential Class” on

page 51 we propose a methodology for writing concurrent applicationsadthedol-

ogy describes how a concurrent application can be designed from sequential object
specifications, and how this process can be automated. In Section 3.6.1 we give an
example of a bounded buffer implementation and a discussion of various aspects of
our concurrency model.

3.2 Concurrency Model Overview

Our concurrency model unifies the notion oprmcessand the notion of anbject
arriving at the concept of atctive objectObjects become active via inheritance from
theClass CONCURRENCY¥oncurrency is viewed as the parallel execution resulting
from the creation of active objects and their interactions with each other.

In order for an object to become active, it musterit from the Class CONCUR-
RENCY TheCreate function is called first to create a sequenpiadxy object. The
actual creation of an active object with its own process is achieved by invoking this
proxy object’'ssplit  method, which is an inherited behavior from @lass CON-
CURRENCYThesplit method starts a new process with an independent thread of
control and returns back to the client afterdlgve objecis created and communica-

tion ports are established and initialized. Then the active object begins executing a
special start-up methodgcheduler . The design method requires that a method called
scheduler is defined for each class that inherits frabdONCURRENCYThe
scheduler method specifies how to serve the requests generatdatbisusing the
remotelnvoke  method. All requests are delivered as actual messages to the server
using a transparent inter-process communication (IPC) mechanism. Since multiple cli-
ents can simultaneously request services, the communicakiaffesed

After asplit , the server object in the client’s process act psoay to the actual
active server object. This proxy object transparently and asynchronously relays the
requests to the active serveregjuest queyeand returns the results of requests which
are asynchronously delivered torigsult queudy the server.

Once a server object has been madive via asplit  operation, new clients that
want to invoke the server’s methods must create their own proxy copies, and use the
attach method to set up the association between the proxy and the active server
object.Attach is significantly cheaper thasplit , since it doesn’t involve creation

of a new address spad&tach is also the only mechanism to share active objects.
Algorithms forsplit  andattach are given in Section 3.3.1.
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In the sequential object oriented paradigmethod invocatioms asynchronougproce-
dure call, and objects apassiveentities, doing work only when their methods are
invoked. TheClass CONCURRENCYmplements anon-blocking, asynchronous
method invocation mechanism callesmotelinvoke . Consider the following code
whereobj is anactiveobject,

call_id:INTEGER;
return_value: T;

call_id := obj. remotelnvoke( "method" arg_list );

. }concurrent execution with obj

return_value ?= obj. claimResult( call id );

--Use call id  to obtain the associated result.

The client does not wait for the completiorobfs execution omethod but concur-
rently continues executing its own code until the point in its own execution where it
actually uses the result of the executiometthod The part of the client’s code shown
with dots above is executed prarallel with theobj’'s code. The result returned by
claimResult  conforms to all types, so it is assigned torétern_value using the

?= reverse-assignment attempt operator. The fijpaf,return_valueis the actual type
returned byobj’'s  methodfeature. This is a data-driven synchronization scheme,
based on asynchronous message passing.

The Class CONCURRENCrovides two methods to access the result of a remote
method invocation. Both of the methods take a single argumeal|_ad, which is
returned by the corresponding remote invocation as a handle to obtain the actual result
in the future. First methodJaimResult , as used in the example of the preceding
paragraph, returns the result delivered by the server. If result is not available yet, then
claimResult  blocksuntil it becomes available. The other metheduyltReady |, is

a non-blockingtest for the availability of result of the remote invocation associated
with thecall_id. All the underlying communication is encapsulated and hidden from
the application.

Since active objects reside in separate address spaces, objects that appear as parame-

ters of remote methods of active objects can not be passed by reference but must be
(deep) copied.
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We have introduced a new design method which provides static-type checking, and
variable-size argument passing capabilities for remote invocations which results in a
simpler, safer, and more transparent utilization ofr¢h@telnvoke  method. Using
FUTURE type results also provides simpler and more transparent accessing of the
result of the remote invocation. Explicit invocation ofaimResult , and
resultAvailable is also eliminated by the utilization of ti&JTURE type. Fol-

lowing code fragment is an example that shows how the design method improves the
shortcomings of the previous example which used the library abstractions for concur-
rency directly.

future: FUTURE;

return _value : T;

future = act obj. method( argl, arg2 ... );

} concurrent execution with obj

return_value ?= future. data,

--implicit claimResult from act _obj

Message acceptance in our modedsgnchronousindexplicit Accepting a message

is separated from actually serving the request. Messages delivered to the communica-
tion buffer but not yet accepted into tleguest_queue are callegpendingrequests.

A queue of request messagesjuest queue , contains all the accepted requests of

the client objects. Each entry in the queue contains all of the parameters of the client’'s
remote invocation request, including tedl_id and reply address. The server object
explicitly needs to show intent to accept messagetRequest is a potentially
blockingcall that commits all pending requests into #dguest_queue , and blocks

if no pending request exists until the first one arrives. A non-blocking version of this
method is thgpendingRequestExists method.

The scheduler has unrestricted access to tequest queue , and it can inspect

the parameters and names of the requests in the queue in order to select and serve one
of them. It can also choose to wait for a certain type of request or a certain condition to
arrive before it selects a request for service. Sending a result back to a client after the
service of a request is also dasynchronoushandexplicitly, using thesendResult

primitive.
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Since there is a single thread inside $heeduler , the scheduler serializes the exe-
cution of its methods. This also applies to the passive objects within each process,
since no sharing of passive objects is possible due to the deep copy semantics of argu-
ments ofremote_invocation . Therefore, all requests to the methods of a passive
object are also serialized. This eliminates the need for synchronization inside the
methods of objects and allows us to have all synchronization points correspond to
communication events.

Objects that are inherently sequential may be designed the same way they would be
designed in sequential Eiffel. This enhanmassabilityin two ways: objects already
designed for sequential applications can be reaeigedin concurrent applications;
non-concurrent applications can directly use such objects designed in concurrent
applications.

Reuseof active objects is supported in a different way. Since most of the synchroniza-
tion and request-service policy is implemented insidestheduler method, a con-
current class can be extended via inheritance and redefinition afchleeuler
method.

3.3 Design of the Class CONCURRENCY

TheClass CONCURRENCahcapsulates a state as well as a behavior that collectively
describes the notion attiveobjects. The state contains the data structures involved in
the communication, scheduling and synchronization events that take place during the
life-time of each individual object. The behavior provides the interface to create active
objects, and request asynchronous execution of their features and communicate with
them.

The Class CONCURRENCI¥ part of theParallel Library which also includes other
classes used for the implementation of low-level IPC and UNIX interface.

A short description of th€lass CONCURRENCI¥ given in Appendix A; in the sub-
sequent sections we provide more detailed explanations of the contents of this class. In
Section 3.6 we give an example application using the concurrency mechanism
described here.
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3.3.1 Design and Implementation Details

Pseudo code describing thelit  method is given in Figure 3.1. #plit  call
implicitly starts a handshake protocol between the newly created active server process
and the calling client, theroxy object. Theproxys port is created first, and its param-

eters are passed to the server as part of its initialization. Then the server creates its own
communication port, and acknowledges fitexy by providing info about its own
communication parameters. At this point the handshake is accomplished prakyhe
andserverare ready to start sending request and reply messages to each other. Each
proxy object has its own communication port. All proxies send their request messages
to the same port at the server process.

split ()
begin
initialize_caller_side_IPC_parameters();

-- create and initializes a dedicated communication port
-- pass caller side IPC info to the new process created
-- by fork() or other system call in Unix.
spawn_new_process();

in parent process -- i.e. proxy side
create_Result_queue();
wait_acknowledge(); -- from the child
-- "ack" contains info about childs’ IPC parameters
record_server_info(); -- using "ack" message
return(); -- from proxy to caller

in child process -- i.e. newly created active object
initialize_server_side_IPC_parameters();
acknowledge_parent();
-- sends "ack" to caller, piggybacking the new IPC info;
obj := create_server_object(); -- first and only object

in this process.
obj.scheduler(); -- invoke obj's scheduler method.
--  transfers control to scheduler of the newly created active
-- object scheduler describes obj's concurrent activity.
end -- split

Figure 3.1: Pseudo codesplit method
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Figure 3.2 gives the pseudo code for theach method.Attach is similar to
split , except that it sets up an association with an already existing active server
object.

attach( server_info )
begin
-- create and initialize a dedicated communication port
-- Note: no new process is spawned.
initialize_caller_side_IPC_parameters();

create_result_queue();
record_server_info(); -- using the parameter passed.

return(); -- without any handshake
end -- attach

Figure 3.2: Pseudo codattachmethod

Figure 3.3 describes the implementation of fié@otelnvoke = method. The argu-
ments of theemotelnvoke = method are the name of the method to be invoked and
the parameters supplied to that method. Tdmotelnvoke  method can only be
issued to a proxy object. This proxy will create a request package and asynchronously
deliver it to the active server. Themotelnvoke call returns a uniqueall_id, which

can be used to access the result of the invoked method. In order to access the result of
a previously invoked method, another abstraction is provided vieldineResuit

method which takes the call_id number as the argument and returns the result if it had
been delivered by the server. If result is not available yet,dlaénResult  blocks

until it is ready. The type of the result object returnedlbynResult  is ANY which
statically conforms to all types. This enabt#simResult  to be a general result
delivery method. The result is assigned to an object of the correct result type expected
by the client by using Eiffel'severse-assignment atteroperator;?=.
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remotelnvoke(  method, method _parameters )
begin

Request_package := create_request_package();

claim_no := unique_claim_no();

set_method_fields(Request_package, method,
method_parameters);

set_IPC_fields(Request_package, claim_no, IPC_info);

-- IPC_info about both server and client packed in server

-- will use this stored IPC info to send the result back

-- asynchronous send to the server using info on package
send_package( Request_package );

return  (claim_no); -- to the client code
-- without waiting for the result from the server
end -- remotelnvoke

Figure 3.3: Pseudo codeemotelnvokenethod

The methodyesultReady  (which also takes alaim_number argument) is non-
blocking and can be used to test if result of the associated request is available.

Since the Eiffel language at the time the concurrency mechanism was developed did
not support the notion of meta-classes, we suppliech#tbod-naméo remoteln-

voke as a string. Also, since Eiffel does not support variable-number of arguments for
methodsremotelnvoke  expects a single variable sized generic array that contains
the actual arguments of the call. The reverse-assignment opé&matas used to
extract the actual arguments from the arguments array. Passing the name of the
method as a string, and packaging/unpacking the arguments manually is error prone,
and not checkable by the compiler. To alleviate these problems and to provide type-
safety, the methodology described in next section provides an alternative way of doing
theremote method caWithout explicitly using theemotelnvoke = method.

Eachactiveobject maintains a queue of requests, cdledquest Queud&ach entry in

the queue contains all of the parameters of the clients invocation, including the
claim_number and communication parameters to send back the result of the compu-
tation. This server object explicitly needs to show intent to accept mesgages.

quest is a blocking call that commits all pending requests int&Réguest Queuand
blocks if no pending request exists until the first one arrives. A non-blocking version
of this method is thpendingRequestExists method. Thé&Request Queus avalil-
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able as a local object, and is implemented as a queue that supports all the general
gueue methods of Eiffel Data Structure Library.

The server object chooses one of the pending requests from the queue, and then
applies thanethodto itself, using the parameters that are also packed into the request,
and then returns the results back to the client upon completion of service also in an
asynchronous way, using tleendResult method. Theclaim_number is also
returned along with the result to the object who invoked the method, so that this (cli-
ent) object can claim the result, using themResult  method. This is a blocking
method which forces synchronization with the server if the result associated with
claim_number has not been returned yet. All the results of remote-invocations get
gueued intoresult_queuen an asynchronous manner and stay there until they are
claimed. On the other hand, thesultReady = method does a simple non-blocking
search ofesult_queugto test whether a particular result is delivered yet.

3.4 Implementation Status

The described system is implemented using version 2.2 Eiffel by ISE [53], running on
Sun’s UNIX based Sun OS 3.0. It is written largely in Eiffel, with the low level operat-
ing system and inter-process-communication (IPC) routines written in C language as
external Eiffel routines. The asynchronous communication is implemented using
Internet domain sockets, and (UDP) datagram messages.

3.5 A Method for Designing Active Objects

The first step of the methodology is to identify the active objects. Our approach is to
start the design using a sequential prototype of the active object. To illustrate the idea,
consider the following sequential Eiffel cla€3ass Ashown in Figure 3.4. The ellip-

sis in the code denote implementation details that are omitted for a clearer presenta-
tion.

We propose a way to extend the sequential clalsss Ato a concurrent one. The
concurrent versionClass Conc_As given in Figure 3.5Class Conc_Aexports the
same method$po andbar. But bothfoo andbar areredefinedas remote methods in
Conc_A
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class A

export

foo, bar
inherit XY, ...
feature

. -- implementation details

foo(argl: T1): T_foo is

do

end
end; -- Class A

Figure 3.4: Sequential Class: A

class Conc A

export  foo, bar
inherit CONCURRENCY

redefine scheduler;
A
rename
foo as A foo,
feature
args : ARRAY[ANY];
scheduler is
local foo argl: T1;
do
from
getRequest;
until  false
loop -- forever

current_request := request_queue.remove;
if current_request.feat_name.equal(“foo”)
then
foo_arg1?= current_request.
parameters.item(1);
send_result(A_foo(foo_argl));

else
-- error handling needed
end
if  request_queue.empty or
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pendingRequestExists
then
getRequest;
end; - if
end; -- loop
end; -- scheduler

foo(argl: T1): FUTURE is

require is_proxy

do
args.put( argl, 1);
Result .Create( Current,

remotelnvoke("foo", args);
end;
end; -- class

Figure 3.5: Concurrent Version of Class A.
3.5.1 Generation of Concurrent Class Prototypes from a Sequential Class

A concurrent class can be generated from a sequential one in an automated way. The
example shown above extends the seque@Gtads Ato a concurrent clas§onc_A
Thescheduler generated fo€onc_Auses a FIFO policy. This scheduler can then be
modified to express more complex synchronization constraints.

The generation of a concurrent class, sucB@sc_Aas given above, is very much
like a stub generation process for an RPC mechanism. The key steps in extending
Class Ato Class Conc_Aare:

1. Export the same features@onc_Aas inA by copying As export clause;

2. Inherit from the class€SONCURRENCYNdA.

3. Redefinescheduleinherited fromCONCURRENCY

4. Rename the exported features so that their sequential implement&lassi
can be utilized insid€lass Conc_AThe new name is derived from the old
name inClass Aby prefixing it with the class nama, For example, the name
A_fooin theClass Conc_/Aan be used to execute the metfamof Class A
SinceA_foois not exported, the sequential implementatiofoofound in
Class Ais hidden from clients dflass Conc_A

5. Construct the exported feature<Ctdiss A.Using the same names for the
exported features i@onc_Aresults in the sequential implementation of these
features to be overridden by the new ones defin€birc_A For examplefoo
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method inConc_Acan be automatically generated by (i) copying the definition
in Class A (ii) changing its return type, sdyto FUTURE and then (iii) rewrit-
ing the body part. The new body consists of two parts: (1) constructing of an
arguments list, by copying the formal argument®ofinto an array, and then

(2) creating and returning”RUTUREtype result object. The result, which is a
FUTUREtype object, is initialized by providing the following two arguments to
its Createmethod. First is the value Gurrent, which is the proxy object, and
second is the claim number returned byrdraotelnvoké "foo", arguments-
array) call. A 'requireis_proxy pre-condition is added to the method, to ensure
that invocations ofoo will be handled only by proxy objects that have executed
asplit  orattach

Redefinition solves a problem which arises dupdlymorphismAn active
object of clas€onc_A sayconc_obj can be polymorphically assigned to an
object reference dflass A saya_obj Without the redefinition ofoo, the call
a_obj.foo()would result in the invocation ébo defined inClass A This vio-
lates the remote invocation protocol of the dynamic and active agact obj
The redefinition ensures correct behavior by invokingdleemethod of
Conc_A.

6. Construct thacheduler method. A FIFO scheduler can be constructed creat-
ing a loop. At each iteration of the loop: (1) pending requests are committed to
therequest_queud?2) one request is selected from the queue, (3) the requested
operation is performed and finally (4) the results are sent back asynchronously,
usingsendResult

7. Generate the necessary data structures usednoyelnvokdtheargsarray),
and other temporaries needed when a request is selected by the scheduler for
servicing. Depending on which method is being served, temporary objects are
needed to supply the correct-typed arguments to the method. For example, the
local objectfoo_argl: T1can be used to during the servicing dbarequest.
Before the actual call, the temporaries must be initialized, using the reverse-
assignment attemp®£ operator) with the argument array part of the request
package.

Note that the steps described above propose a waytomatingthe process of
extending a sequential class to a concurrent class prototype. This methodology helps
overcome two problems related with type-safety, and static type-checking, both of
which arise due to directly calling themotelnvoke = method by clients. These two
problems are: (1) having to pass thethodargument as a string; (2) handling of vari-

able number of arguments. The methodology provides a way to indirectly call
remotelnvoke  using the same (type-safe) syntax of a sequential call.

UsingFUTUREO objects as results of remote method invocations eliminates the need to
keep track of theall_id andserver_objecproxy associated with the remote invoca-
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tion. Also eliminated is the need to explicitly caimResult ~ to obtain the result.
UsingFUTUREtype objects makes it simpler and more transparent to uskithe
Result andresultAvailable methods of th€lass CONCURRENCY.

3.5.2 Reusability Issues

An important aspect of our design method is its support for software composition and
reuse. This support is due to the fact that our concurrency mechanism is compatible
with the key object oriented principles for providiregisability These principles are:

data encapsulation, data abstraction, polymorphism, inheritance and genericity [53].

Data encapsulatiomproperty of objects in sequential Eiffel is respected by our meth-
odology. Active objects have a protected internal state which can only be accessed or
modified by invoking a method specified in its interface. Proxy objects do not have
any direct means to modify the state of the active objects. They are only responsible
from delegating requests and collecting replies. Therefore proxy objects do not violate
the data encapsulation property of the active objects. The active object has complete
autonomy over managing its internal state.

Data abstractionis the mechanism which frees the client of a class from having to
know its internal representation. In our methodology the client of an active server does
not need to know how its request will be delivered and serviced. The client simply
contracts a job (by remote method invocation) to the server and then check on the con-
tractor’s status only when the need arises. The only point the client needs to synchro-
nize with the server is when the result is needed, and this does not require any extra
concurrency/synchronization related information about the server’s implementation to
be known by the client.

Inheritanceis the key technique used in the methodology to create concurrent objects.
The way inheritance is used in our methodology as a software development technique
allowing extension, specialization and stepwise refinement is essentially the same as
in sequential Eiffel programming.

Objects that are inherently sequential may be designed the same way they would be
designed in sequential Eiffel. This enhanmassabilityin two ways: objects already
designed for sequential applications can be reaeigedin concurrent applications;
non-concurrent applications can directly use such objects designed in concurrent
applications.

Reuseof active objects is supported in a different way. Since most of the synchroniza-
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tion and request-service policy is implemented insidestheduler method, a con-
current class can be extended through inheritance and redefinitionsohthlel/er

A discussion of how our methodology suppgdymorphisms given in the section
titled: “A Method for Designing Active Objects” on page 49 in step 3.

3.6 An example: Bounded Buffer

Figure 3.6 presents tiBJUFFER Class, which defines a sequential buffer class with a
bounded storage. We desigaCTIVE_BUFFERCIlass by applying the methodology
presented in the previous section. We modify the FIFO scheduler generated by the
methodology in order to express different synchronization needs of the active bounded
buffer example. The ClagsCTIVE_BUFFERSs presented in Figure 3.7.

Figure 3.6: Sequential Buffer Class

class BUFFER [T] -- A Sequential Bounded Buffer Class

export
put {PRODUCER}, get {CONSUMER}
feature
buffer : FIXED_QUEUE [T] ; -- actual storage
put ( Iltem: T ): BOOLEAN is --
do
if not  buffer.full then
buffer.put (Item); -- append to buffer
Result ;= true;
else --return code for failure
Result ;= false;
end; --if
end; -- put
get: T is --
do

if not  buffer.empty then
-- remove the oldest item in buffer
buffer.remove;

-- return the removed item
Result := buffer.item;

else --return a Void object for failure
Result.Forget; -- Result made Void
end; --if
end; --get end -- class BUFFER
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Figure 3.7: ACTIVE BUFFER Class

class ACTIVE_BUFFER -- A Concurrent extension to BUFFER
export put {PRODUCER}, get {CONSUMER}

inherit
CONCURRENCY
redefine  scheduler;
BUFFER
rename
put as BUFFER_put,
get as BUFFER_get
feature

args : ARRAY[ANY]; -- argument list for remotelnvoke
scheduler is -- execution begins here

local

put_Item: DATA,
do
from
-- buffer allocated only by the active object
buffer.Create;

-- initially block until request(s)arrives

getRequest,
until  false
loop --i.e.loop forever

-- pick a request
current_request := request_queue.remove;
if current_request.feat_name.equal(“put")
and not buffer.full then
put_ltem?=current_request.
parameters.item(1);

-- ack producer asynchronously
sendResult(BUFFER_put(put_Iltem));

elsif  current_request.feat_name.equal("get")
and not buffer.empty then
sendResult( BUFFER_get); -- to consumer
else -- cannot serve the current_request
request_queue.put_left(current_request);

-- skip over
end;
if request_queue.empty
or pendingRequestExists then
getRequest ; -- blocks only if empty
elsif  request_queue.offright then

-- go back to oldest in queue
request_queue.start;
end,;
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end; --loop
end; -- scheduler

put ( Item: DATA ): FUTURE is -- executed only by the proxy
require is_proxy
do

args.put( Item, 1); -- initialize arguments array
Result.Create(Current, remotelnvoke("put", args) );
end; -- put

get : FUTURE is -- executed only by the proxy
require is_proxy
do
Result.Create(Current, remotelnvoke( "get”, args) );
end; --get
end -- class ACTIVE_BUFFER

In order to prevent the producers from producing unboundedly, put returns an
acknowledgment back to the producer in an asynchronous manner. The implementa-
tion of PRODUCERFigure 3.8, allows a producer to have at most one outstanding put
request. The data-driven synchronization of the producer allows it to produce the next
item without having to wait for an immediate acknowledgment.
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Figure 3.8: Producer Class of Bounded Buffer Example

class PRODUCER

inherit
CONCURRENCY
redefine  scheduler;
feature

b_buffer : ACTIVE_BUFFER ; -- shared buffer object
Data_item : DATA,; -- unit of production
buffer_params : SOCKET,; -- IPC info to attach buffer
synch : FUTURE;

scheduler is -- execution begins here
do
from
b_buffer. Create ; -- create proxy
getRequest ; -- wait until buffer info arrives
buffer_params?=request_queue.first.parameters(1);
b_buffer.attach(buffer_params);

U Produce First Data Item d
until  false
loop -- forever
-- asynchronous remote method invocation.
synch:= b_buffer.put( Data_item);

-- at this point producer continues to execute
O Produce Next Data Item d

-- wait result here
synch.data;

O More processing d
end; --loop
end; -- scheduler
end -- class PRODUCER
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Figure 3.9: Consumer Class of Bounded Buffer Example

class CONSUMER
inherit
CONCURRENCY redefine  scheduler;
feature
b_buffer : ACTIVE_BUFFER;
data_item : DATA,
buffer_params : SOCKET;
box: FUTURE; -- FUTURE DATA result returned by remote invocation
scheduler is -- execution begins here
do
from
b_buffer.Create ; -- create proxy
getRequest ; -- wait until buffer info arrives
buffer_params?=request_queue.first.parameters(1);

b_buffer.attach(buffer_params);
until  false
loop -- forever
-- generate a remote request for “get”
box := b_buffer.get;

-- wait here until data becomes available
data_item ?= box.data;
0 Consume Data Item a
end; --loop
end; -- scheduler
end -- class CONSUMER

3.6.1 Notes on the Bounded Buffer Example

An interesting feature of the given implementation is thaAtB&IVE_BUFFERCIass

has complete autonomy over how it services the requests of its cliersishébeler

routine being the only place where these decisions are made. This is important with
respect to reusability since one may reuséMb@lVE_BUFFERCIass with ease, only
redefining thescheduler routine, in order to introduce a new protocol or specifica-
tion. Since all the synchronization code is confined to the scheduler. One can easily
extend the given class by inheriting and/or modifying the synchronization code and
functional code separately. Another advantage of this approach is that the functional
code remains "pure”, and can be written without worrying about the synchronization
issues which could otherwise create dependencies between relatively independent
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parts of code in different modules, and compromise the encapsulation and procedural
abstraction properties.

To show how flexible and expressive the approach is, we discuss alternative ways of
implementing different synchronization constraints using our buffer example. Let’s
say we would like to allow consumers to be served even if there are earlier requests
from producers. We can simply change the policy executed at each iteration of the
scheduler loop to choose the oldegt” type request from thequest queud buffer

is not empty. This can be done by scanning the request queue, and sempiurig a "
request only when (1) there is nget' request and buffer is not full; or (2) when
buffer is empty. Another application might be to respect real-time scheduling con-
straints of the service requests, where this information is made available as a parame-
ter of the service request. Since we have the ability to "look into" the request messages
without selecting them, we can program many complex scheduling algorithms.

3.7 Summary

We have presented a method of writing concurrent applications in Eiffel Language.
The method introduces concurrency as an inheritable property of objects specified in
the Class CONCURRENGCYNd provides a methodology using inheritance to write
concurrent, distributed applications. Indeed what we have done in this work can be
seen as a way of placing Eiffel Language on top of the concurrency that exists at the
underlying processor or operating system level, rather than placing concurrency into
the Eiffel Language.

In our approach, the active server object can choose the type of requests to respond to
and in what order. This is a very powerful mechanism addressing the problem of deal-
ing with local delayq46].

An important issue addressed by our methodologyeisability Reusability is
enhanced by separating the sequential and concurrent aspects of a class. Also the
scheduler method can be used to express most of the synchronization code and the
concurrent behavior of the object. Reusability and modifiability are enhanced since
one can easily extend a given class by inheriting and/or modifying the synchronization
code and functional code separately. Reusability is also supported by preserving the
data abstraction, data encapsulation, genericéigd polymorphismprinciples of
object-oriented programming. Section 4.2 addresses the reusability issues in greater
detail.
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Another issue addressed by the methodology is the static type checking of method
names and the arguments that are teebete_invoked

The ability to express powerful synchronization constraints as reusable software com-
ponents emerges as a strong point of the method. The concurrency mechanism pre-
sented here is designed for writing distributed applications. It does not assume a
shared-memory model and supports distribution of the active objects over a network.

An issue that requires further investigation is about identifying the synchronization
and correctness needs in the presence of multi threaded schedulers in shared-address
spaces. Without having explicit control over the scheduling and preemption of multi-
ple threads in a shared-address space many new technical difficulties are introduced.
Some of these difficulties are related with mutual exclusion of the execution of an
objects’s methods, and non-reentrant system calls. Some of these issues have been
mentioned in [15]. A concurrency mechanism with multi threaded active objects must
satisfactorily address the interference problem with respect to data encapsulation, pro-
cedural abstraction and reusability issues, that emerge due to the potential arbitrary
interleavings of an object’s methods.
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Chapter 4

Active-RMI:  Asynchronous Remote
Method Invocation System for Distrib-
uted Computing and Active Objects

4.1 Introduction

In this chapter we discuss the design and implementation &dine-RMI (Active
Remote Method Invocatiosystem Active-RMlis a set of class libraries, tools, and a
design method which provides high-level abstractions for building distributed Java
applications based on active remote-objestdive-RMIis a natural extension of our
earlier work[41] involving introducing concurrency extensions to Eiffel language
using class librariedctive-RMlis implemented as an extension to Jaga-RMIsys-

tem which was integrated by Sun into the Java Language[31] with the release of JDK
1.1. The key contributions oActive-RMI system to distributed computing is the
extension ofJava-RMI with the following features:

1. Asynchronous remote method invocation with future-type results and asynchro-
nous result delivery mechanism from the server to the caller.

2. On-demand remote-object creation by a client, with transparent class export/
uploading.

3. Active-object semantics for remote objects created usitige-RMIprotocol.

4. User programmed scheduling and synchronization of remote method invoca-
tions.

Active-RMl libraries allows programmers to design and implement remote active-
object interfaces. Using standard Java symaxye-RMlapplications can create new
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active remote objects or lookup existing active remote objects on participating hosts.
Standard Java object references and method invocation syntax is used to perform
asynchronous method calls on remote objects. Remote hosts where new active objects
get created need to be active and willing participants irttiee-RMIprotocol, but

they do not need to have a-priory knowledge of the types of active objects that they
will host. Active-RMlIprotocol transparently exports the needed class definitions in a
demand-based fashion. Remote objects are created as autonomous agent-like objects,
with a thread starting execution at a designated scheduler method. Active objects can
access their private request queue of incomiative-RMIrequests from clients. We

use the term dctive’ to describe the remotActive-RMI object’s ability to execute
arbitrary code as well as its ability to make autonomous scheduling decisions about
which requests (if any) to serve after inspecting its request queue.

4.2 Overview of Active Remote Method Invocation System
Writing a distributed application usingctive-RMlIrequires providing the following
definitions for each active remote-object type:

* Interfacespecifications.
» Implementation classder the interfaces.

* Scheduler methodmplementing active object behavior and synchronization
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Figure 4.1: Asynchronous Remote Method Invocation

We call any object that creates or obtains a reference to an active remote-alject a

ent of the remote object. Using its interface and implementation definitions, an active
remote object can be created and referenced by client programs using an RMI based
transport layer connecting different hosts participating in the distributed computation.
Active remote-objects can be created on any host connected to the Internet that has an
Active-RMI Server daemomnning. We refer to the host on which Aative-RMI

object has been created aseaver It is possible for a client object to be involved in
some distributed computation where it acts as a server to some other client. The
Active-RMI system is built as an extension to Sun's Remote Method Invocation
(RMI) system, and uses the same Java virtual machine, remote reference layer and a
similar stub/skeleton creation and deployment mechanism.
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4.2.1 Remote Object Referencing And Type-safety

A client object declares and referencesAative-RMIobject using its interface and
implementation specifications using the same syntax as a standard Java object. The
client can obtain a remote object reference either by usiAgtive-RMI naming/

lookup service or by receiving the remote object reference as a parameter or result
from another client. Alternatively, a client careatea new active remote-object on a
remoteActive-RMI server host usingctive-RMIremote-object creation service. The
client can invoke public methods of an active remote object as specified in its remote
interface specification usinggandard Java syntabor object method calls. Since both

the interface and implementation specificatiohgctive-RMIobjects, and alictive-

RMI libraries are written in Java, any standard Java compiler can statically enforce
Java’s strong typing for the client’s code

CLIENT SERVER

A-RMI Server

aRmiServer srv = Naming.
lookup( “//host/aRmiServer”);

IActive Remote Object: x

X_Type x = (X_Type)
srv.createRemoteObject(
X _Type);

—”
—-—
—-—

A-RMI| ClassLoader i~ . B

O [Remote object | O \ Local obj.\ I|~ Object serialize

n - & copy
@ Request object ‘ SUb O] | > Remote reference]
@ Result object ‘ Skeleton obj.| — [5piect reference

Figure 4.2: Active Remote Object Creation
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4.2.2 Semantics OfActive-RMI Remote Method Call

Despite the similarity in syntax, the semantics oAative-RMIremote-method call is
different from that of a standard Java method call. There are three main differences:
asynchronougall semanticspy-value parameters-passingstead of passing local
object references; and the remote computation’s being carried out in a different Java
runtime environment, in a separate thread and address space. Figure 1. illustrates the
object layout and references and the communication aspects of an asynchronous
Active-RMicall. The call, on thelient side returns immediately after registering the

call locally with itsActive-RMIcall registry, without waiting for the remote computa-

tion to be completed. The value returned is a unique pseudo-result that the client needs
to convert into &all-handle The call-handle object can be used to do a blocking wait

or non-blocking query about the delivery of actual result from the server. Remote
method calls involve delivering the call as a request-packages into remote object’s
request queue, and receiving the result also as a network package delivered through a
call-handle. When marshalling the local-object reference parameters of the call into a
request package, or the result back to the clstiye-RMI uses object-serialization

to flatten and pass deep-copies of local objects.

4.2.3 Active Objects And Scheduling

On the serveside, upon receiving a create remote-object request from a client, an
Active-RMIserver object creates the active remote object with the requested type and
starts a new thread which begins executing in the objsdiisduler method. A
remote-stub reference is returned to the client, which can be used to invoke remote
methods of the active object, or can be passed to other clientsschéuuler

method, if provided as part of the object’s implementation overrides a default (FIFO)
scheduler and is written as a standard Java language method. By aaiwegRMI

objects to describe a behavior of their own usingdteduler method, and have
autonomy over how and when to serve incoming requéstive-RMI introduces

active objectss en extension of the passive object model of 2atae-RMIsystem

also provides each active object with a dynamic queue of requests, where each entry
in the queue is aaRmi_Requegibject which has been asynchronously delivered by
the underlying remote reference layer as a result of a client’s invocation of one of the
remote Active-RMI object’s public methods. The scheduler method can wait for
arrival of requests into the queue, inspect the contents of each request message, includ-
ing the method'’s signature and the values of its actual parameters. When the scheduler
decides to serve " one of the requests, it is taken off the queue, executed and the
result is asynchronously delivered back to the client.
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4.2.4 Remote Object Creation And Distribution

Figure 2. illustrates the object layout, references, communication aspects and data-
flow during remote creation of an active object. On each host where clients are
allowed to create active remote-objects, a daemon process runnidgtoua-RMI
library’s ARrmiServer_Impl must be started. This process registers itself with a
standardJava RMI rmiregistryservice under the nama@RmiServéet Clients can

locate theaRmiServeusingrmiregistry lookup with that name on the server host.

A new active remote object is created on the server using#lageRemoteObject

method ofaRmiServer , by passing the remote-object’s class name. If a local class
by the requested class name is not found at the server host, an exception is thrown
forcing the client’s stub to transparently sendCéassExporter  object,ce. The

server uses the class exporter object to transparently install aRwei€lass-

Loader, downloads required client-side classes from the client and finally creates the
requested active object on the server. A stub reference to the active object is returned
to the client. In order to facilitate the potential need for installing a new class loader as
required byActive-RMis remote object creation protocol, thRBmiServer process

is started with a custom security managBmiSecurityManager , which allows
installing new class loaders.

4.3 Architecture of Active Remote Invocation System

The Active-RMIsystem is designed as an extension to Siews RMIsystem and

uses RMI libraries at implementation level whenever suitable. The classes and inter-
faces comprising thActive-RMiclass library, and its inheritance hierarchy is shown

in Figure 3. While this approach creates a tight coupling between our implementation
and Java RMI, it provides some valuable benefits: siaga RMlis part of the stan-

dard distribution of Java Developer Kit as of JDK 1Atfive-RMllibraries can be

guite compact, reducing the amount and size of network traffic and initialization over-
head for certain applications that need to dynamically downloaddtiee-RMIclass
libraries; Active-RMIsystem uses the same standard Java Virtual MachiRMB®r
runtime support, allowing our design to introduce new features and extensions without
making modifications to the Java language or its virtual machine; applications that
already usdRMI can be easily extended to take advantag&ctie-RMlextensions;
future enhancements RMI with regards to performance, reliability, security, etc., can
directly benefitActive-RMlapplications as well.
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Active-RMIClass libraries are organized with two primary components: classes and
tools to supportlient applications and those to suppsetverimplementations. This
delineation is highlighted in Figure 3 where the grouping of client and server classes is
shown as separate blocks. A high-level description of the functions supported by the
client and server classes are described here, and the rest of this section elaborates on
the functional description of the classes.

4.4 Client Abstractions and Functions

4.4.1 Active Remote Object Interfaces And Implementations

A client program can refer to an active remote object using its interface definition.
Each active remote interface musktend the interfacactiveRemote and contain a

list of the public methods that can be remotely invoked.AldieeRemote interface

of the Active-RMllibrary extends the Java RMIRemote interface. Both of these
interfaces have empty bodies and simply servaagertypes used by the automatic
stub and skeleton generator utilities and by the Java Virtual Machine (JVM) to trans-
parently use the remote reference layer. The JVM implicitly invokes the correspond-
ing stub method during the method invocation ofeativeRemote  object instead of

the method from its implementation clas$he example below describes an active
remote object interfaceActObj, which has a single methdab taking anint

and anObject argument and returning a result of object tyge;

interface ActObj extends ActiveRemote

{
}

public Bar foo(int a, T tObj);

A concrete class must implement the active remote interface in order for a client or
server process to be able to create the actual active object. Active object implementa-
tion classes must exterative-RMIs UnicastActiveRemoteObject class. A cli-

ent or server program, providing such an implementation class can create new active
objects on authorizing hosts. Once the active object is created a remote stub reference
can be exported to any client using its active remote interface definitiomAcTive-

RMI library implementation of th&nicastActiveRemoteObject class extends

the Java RMI library claggnicastRemoteObject, and provides the active remote
object functions of théctive-RMlIprotocol to both clients and servers. An example
implementation outline of thectObj interface is presented below:
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class ActObj_Impl extends UnicastActiveRemoteObject
implements  ActObj ...
{

}

public Bar foo(inta, T tObj) { ...} ...

4.4.2 Active Remote Object Creation

Active remote objects can be created on a remote host usigtive-RMIserver
interface,aRmiServer . An Active-RMIserver process implementing thRmiSer-

ver interface is provided with th&ctive-RMIsystem and can be started by a user on
that host machine as a user level service. This process needs to be registered with the
Java RMIrmiregistry service under the nameRmiServer Once the registry name
binding is established clients can lookup and locatéttee-RMIserver object:

aRmiServer rServer=(aRmiServer)Naming. lookup (
"/lhostname/aRmiServer");

After the remotéActive-RMiIserver referenceServer, is obtained, it can be used to
create active objects on the remote server by usingRiméServer object’'s exported
interface’screateRemoteObject method which takes the name of a class imple-
menting the remote active interface as a parameter used to create the remote active
objects on the server:

ActObj obj = (ActObj)rServer. createRemoteObject  (
"ActObj_Impl");
or
ActObj obj=(ActObj)rServer. createRemoteObject  (

"ActObj_Impl",new ClassExporter_Impl());

The latter form is typically used transparently by the stub implementation of the
aRmiServerobject, when the former form typically used by the client programmer
raises a remote exception due to classes not being found on the remote server host.

The createRemoteObject returns a stub handle as a a remote-reference to the
newly created object on the remote server. Calling the public methods of this object as
specified in interfac@ctObj is transparently carried out as an asynchronous remote
method call.
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4.4.3 Asynchronous Remote Method Calls And Call Handles

Methods of active remote objects are always callegnchronouslyi.e. the call
returns to the client immediately with a pseudo result, which can be converted to a
call handle.A unique call-handle is associated with each asynchronous remote method
invocation. The client can instantiate the call handle through the constructor of the
properCallHandle  subclass passing as argument the temporary result returned by
the remote call -- the exception isvid_CallHandle , whose constructor takes no
arguments. The call-handle can be used to either do a blocking wait on the result of
the remote computation, vgetResult , or do non-blocking query of result’'s avail-
ability, viaresultReady . In the example code snipet below, the client’s invocation

of the methodfoo () of the active remote objeatbj , returns aresult whose type is

the same type that is declarecblsy ‘s remote interface. The type of the result that a
remote method returns can be any of the primitive Java language types or some
Object type which implements theerializable interface. In the following exam-

ple:

Bar t = obj.foo(argl,arg2);
Object_CallHandle th = new Object_CallHandle t);

obj's foo() method is invoked with two actual argumerdgyl andarg2 , and
returns immediately with a temporary unique vatueof type Bar. This value is sub-
sequently used to obtain a call handfe, of type Object CallHandle . The
waitFinished () method ofCallHandle class can be used for synchronizing with
the completion of the remote computation without actually collecting the result, this is
the only way for synchronizing with a void return type remote method.

Since Java primitive types are not derived fr@bject class, thegetResult

method cannot be written as a generic method returning a generic object or primitive
type. Therefore, actual call-handles need to be created as one of the specialized sub-
classes o€allHandle , such as amteger_CallHandle forint result type calls,

or Object_CallHandle for remote calls returning aDbject or array type, etc.
Active-RMIlalso defines and use<all registry abstraction to transparently generate

and manage the call-handles.

4.4.4 Call Registry And Synchronization With Remote Host

Active-RMIsystem transparently maintainsadl-registry object associated with each
client. The call registry is used by the client stubs to create unique temporary results
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and to register the call details and the associated remote reference layer state informa-
tion. This registry information is used when the constructorGidli&landle class is

called to associate the remote asynchronous call with a call-handle for future result
delivery. Using a call handle obtained from the call-registry the client can either do a
blocking wait, using thgetResult ~ method of theCallHandle class, and wait for

the result’s arrival from the remote server; or do a non-blocking query, using the
resultReady ~ method which immediately returns true or false depending on whether
the result is ready. In the following example:

int result = ih. getResult  ();

the client waits for the remote computation to finish and ship back the result of the
computation associated with theger_CallHandle , ih , and the received value

is assigned to result. For primitive type results no casting is necessary since the call
handle already holds the type information. For remote methods returning arbitrary
object-types, however, the value returned needs to be cast to the right type. In the code
segment below, th@bject_CallHandle, oh, is being used to synchronize with

a remote call returning®type object:

T resObj = (T) oh. getResult  ();

45 Stub and Skeleton Classes

Active-RMI uses stub classes on the client side for marshalling and registry of the
remote calls and skeleton classes on the remote server host for request dispatching and
scheduling. The interface approach and stub/skeleton naming conventions are identi-
cal to the standard Java RMI calls. The construction and use of Active-RMI stub and
skeleton classes is also similar to that of standard Java RMI stubs.

451 Client side Stub Classes

When a client calls a method of an active remote object the actual method that is
invoked is the correspondirsgub classnethod. The stub object acts as a proxy imple-
menting the remote object’s interface by marshalling each call into a request package
and delivering it to the remote object on the server side. This process is very similar to
the standard Java RMI system and the current implementation is built as an extension
to the RMI remote reference layer. Unlike RMI, howevaertive-RMI stubs return

back immediately to the caller a unique temporary result after implicitly registering
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the call-details with a local client-side registry, without waiting for the actual result of
the computation from the remote host. It is the client’s responsibility to keep track of
the remote call status and result using a call handle for each remote invocation. Client
obtains the call handle from the registry using the unique temporary returned by the
stub method. The actual result for a remote call gets delivered asynchronously by the
remote active object and is ultimately returned to the client application when the call-
handle’sgetResult method is invoked.

45.2 Server Side Skeleton Classes

Skeleton Classder active remote objects also work similar to their Java RMI coun-
terparts. Skeleton classes are uploaded to the server &Rrtti€lassLoader possi-

bly through the use of @assExporter  object at the time the first remote object is
created. When a client invokes a method of a remote object, the corresponding stub
method is called by the RMI Java runtime, which in turn marshals the call parameters
and dispatchesthe call to the corresponding skeleton object on the remote server.
Active-RMIskeleton classesiispatch  implementation, unlike its RMI counterpart,
does not immediately serve the request but instead converts the call parameters into an
aRmi_Request object and delivers it to the active objecRequestQueue . Active
object’s scheduler is responsible for the final call completion and the asynchro-
nous delivery of the result back to the client by invokingdtwee method of the
request object.

4.5.3 Stub and Skeleton Class Examples

In this section we present stub, skeleton and implementation classes implementing the
simpleHello interface:

public interface Hello

extends java.rmi.Remote

public String sayHello(int id)

throws java.rmi.RemoteException;
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import activeRmi.*;

public final class Hellolmpl_Stub

extends java.rmi.server.RemoteStub

implements Hello, java.rmi.Remote
{

private static java.rmi.server.Operation[] operations = {

new java.rmi.server.Operation(
"java.lang.String sayHello(int)")

h

private static final long interfaceHash =
-5352162705594599214L;

public Hellolmpl_Stub() { super(); }
public Hellolmpl_Stub(java.rmi.server.RemoteRef rep)
{super(rep):}
/I Methods from remote interfaces
/I Implementation of sayHello
public java.lang.String sayHello(int $_int_1) throws
java.rmi.RemoteException {
int opnum = 0;
java.rmi.server.RemoteRef sub = ref;
java.rmi.server.RemoteCall call =
sub.newCall((java.rmi.server.RemoteObject)this,
operations, opnum, interfaceHash);
try {
java.io.ObjectOutput out = call.getOutputStream();
out.writelnt($_int_1);
} catch (java.io.lOException ex) {
throw new java.rmi.MarshalException(
"Error marshaling args”, ex);
h
try { sub.invoke(call);
} catch (java.rmi.RemoteException ex) {
throw ex;
} catch (java.lang.Exception ex) {
throw new java.rmi.UnexpectedException(
"Unexpected exception”, ex);
3
java.lang.String calllD = new java.lang.String();
FutureRegistry.registerCall(calllD, call, ref);
return calllD;

Figure 4.4: Active-RMI Hello Implementation Stub Class
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public final class Hellolmpl_Skel
extends java.lang.Object
implements java.rmi.server.Skeleton,
Dispatcher, Runnable

private static java.rmi.server.Operation[] operations = {
new java.rmi.server.Operation(
"java.lang.String sayHello(int)")

%

private static final long interfaceHash = -
5352162705594599214L;

public java.rmi.server.Operation[] getOperations() {
return operations;

}

public aRmi_RequestQueue RequestQueue;

public Hellolmpl server;

public void dispatch(java.rmi.Remote obj,
java.rmi.server.RemoteCall call, int opnum, long hash)
throws java.rmi.RemoteException, Exception {

if (hash != interfaceHash)
throw new java.rmi.server.SkeletonMismatchException(
"Hash mismatch");
server = (Hellolmpl)obj;

java.io.ObjectOutput out;

RequestQueue = server.RequestQueue;

if (activeThread == null) {
activeThread = new Thread ( (Runnable)this );
activeThread.start();

}

switch (opnum) {
case 0: {// sayHello
int$_int_1;
try {
java.io.Objectinput in = call.getlnputStream();
$_int_1 =in.readint();
} catch (java.io.lOException ex) {
throw new java.rmi.UnmarshalException(
"Error unmarshaling arguments”, ex);
} finally {
call.releaselnputStream();

k
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try {
out = call.getResultStream(true);

} catch (java.io.IOException ex) {
throw new java.rmi.MarshalException(
"Error marshaling return", ex);

%

Object args[] = new Object[1];

args[0] = new java.lang.Integer($_int_1);

Thread thisThread = Thread.currentThread();

server.RequestQueue.push( new aRmi_Request(this, server,
call, thisThread , opnum, args));

activeThread.resume();
thisThread.suspend();

/*

* suspended thread resumes here to finish computation
*/

java.lang.String $result = server.sayHello($_int_1);

try {
out.writeObject($result);

} catch (java.io.lOException ex) {
throw new java.rmi.MarshalException(
"Error marshaling return”, ex);

k

break; // thread will break free from here.
}
default:
throw new java.rmi.RemoteException(
"Method number out of range");

}
}
public void run() {
try {
defaultScheduler();

} catch (java.rmi.RemoteException ex) {

} catch (Exception ex) {}
}

public void defaultScheduler()
throws java.rmi.RemoteException, Exception

{

while(true) {
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while ('RequestQueue.empty()) {
aRmi_Request currentRequest =
RequestQueue.getFirstRequest();
currentRequest.serve();
RequestQueue.removeRequest(currentRequest);

}
Thread.yield();
waitForRequest(1000L); // block till next

requestdispatched
Thread.yield();
}

}
public void waitForRequest(long ms) {

Thread.currentThread().suspend();

}

public boolean debug = false;

private boolean started = false; // set to true when

/I activeThread starts
private Thread activeThread = null;

Figure 4.5: Active-RMI Hello Implementation Skeleton Class
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import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import activeRmi.*;

public class Hellolmpl
extends UnicastActiveRemoteObject
implements Hello

private String name;
public activeRmi.aRmi_RequestQueue RequestQueue;

public Hellolmpl()
throws java.rmi.RemoteException, Exception

{
}

RequestQueue = new activeRmi.aRmi_RequestQueue();

public String sayHello(int id) throws RemoteException

{

return "Hello aRmi World! <id=" + id + ">";

Figure 4.6: Active-RMI Hello Implementation Class

4.6 Exceptions

Exceptions that may be thrown as a result of a remote method invocation are passed
through the RMI layer and can be caught in the client with the usual Java syntax and
semantics. Remote exceptions as specified by Java RMI are handled in the same fash-
ion in Active-RMI

4.7 Server Abstractions and Functions

4.7.1 StartingActive-RMI server

A specialActive-RMlserver process, implementing thRemiServer interface needs
to be running on a server host in order for a client application to be able to remote-cre-
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ate active-RMI objects on that host. A new active remote object can be created on the
remote host viareateRemoteObject method which returns a remote stub refer-
ence to the newly created active object. WithoutAbBve-RMIserver process run-

ning, a local object can still create active objects on its own host and export them to
clients possibly residing on different hosts, but clients on remote machines will not be
able to directly connect to this host and create active remote objects onActives

RMI server process is registered using standard RMI registry mechanism using the
name ‘aRmiServer Client applications can locate and obtain remote object refer-
ences to the server fpva.rmi.Naming utility:

aRmiServer rHost = (aRmiServer)java.rmi.Naming. lookup (
/lhostName/aRmiServer");

Active-RMlclass libraries contains a class caldgtmiServer_Impl  which imple-

ments theaRrmiServer interface. This class can be used to instantiatActinve-

RMI server object as part of an application. Alternatively, a command-level utility,
aRrmiServeris provided and can be started independently as a standalone daemon
process or user level application.

4.7.2 Active-RMI Server And Remote Object Creation

The primary function of théctive-RMIserver object implementing th&miServer
interface is to facilitate remote object creation. It provides the methezdeRemo-

teObject to be used by clients to spawn new active remote objects. Invoking the
createRemoteObject ~ method of amRmiServer object results in the creation of a
new object on that server host. AgtiveRemote object reference, a subtype of
java.rmi.Remote  , is returned to the client. The returned reference acts as a proxy to
the actual remote object: client’s invocation of the proxy’s methods are handled as
asynchronougé\ctive-RMIrequests, executed on the remote host.cFésteRemo-

teObject method can be invoked with a single string argument, which contains the
implementation class path of the active remote object implementation:

Hello obj= (Hello) rHost. createRemoteObject  (
"aRmiExamples.Hellolmpl");

or with an additionalClassExporter argument,

Hello obj= (Hello) rHost. createRemoteObject  (
"aRmiExamples.Hellolmpl",new ClassExporter_Impl());
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The latter form is typically used transparently by the stub implementation of the
Active-RMI Servewbject. If the server cannot find some of the classes locally, it
throws an exception forcing the client’s stub to paS&ssExporter  object. When

the client responds by passing a class exporter object, a new class d&adier,
ClassLoader, is created and installed transparently by the server utilizing the
remote class exporter object received from the client to download required client-side
classes and create the active object on the server. In order to facilitate the need for
installing a new class loader as requiredAayive-RMIremote object creation proto-

col, theaRmiServemprocess usedActive-RMis security managegRmiSecurity-

Manager, which allows installing new class loaders. Finally, #imiServer
process handling thereateRemoteObject request creates the active object
requested by the client, exports it using the RMI remote reference layer and returns a
stub reference to the client. Figure 4.2 depicts a typical object creation scenario.

4.7.3 Active Object Semantics

We use the termctive objecto describe an object which has an independent thread,;
has access to a request queue of incoming method invocation requests; and has the
ability to inspect, select and serve any of the requests in its request queAetiide

RMI system extends the Java object model by giving active objects autonomy over
how and when to respond to their clients’ requests. Active objects are created using
Active-RMI UnicastActiveRemoteObject class which uses the RMI remote ref-
erence layer, the communication subsystem, and provide&cthee-RMI request
gueueand a default (FIFO3cheduler . The Active-RMIserver, creates each active
object with a request queuand a dedicated thread and then returns to the client a
remote-stub reference. The active object’s thread begins executiorsdhetisiler

method.

In Active-RMlactive object model, each request to the active remote object is deliv-
ered as araRmi_Request message object into the target object’s private request
pool. There are no service guarantees, or an implicit order in which the arrived mes-
sages will be served. The active object inheritRiéguestQueue constructed by the
Active-RMIprotocol as a private instance variable, and uses the thread executing its
scheduler to decide how to process requests placed into the queuschidugiler

method, however, is not restricted to only implementing scheduling activities and it
can perform general purpossgent-likecomputation. The active object’s scheduling
thread can access thRequestQueue directly and peek into the queue of
aRmi_Requests , and implement a selection policy to choose and serve one of the
requests in the queue. The scheduling policy can involve inspecting each request’s
type, or its method signature, or the values of its actual arguments. The scheduler
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thread may also decide not to serve any of the current requests in the queue; or may
wait until a certain event takes place, or a certain request arrives. A sichpte

uler code, enforcing a last-in-first-out (LIFO) style servicing of its request queue is
shown below:

private void scheduler()

throws java.rmi.RemoteException,Exception

while(true) {
while (! RequestQueue.empty()) {
aRmi_Request currentRequest =
RequestQueue. getLastRequest ();

currentRequest. serve ();

}

RequestQueue. waitForRequest (); // blocking call

4.7.4 Active-RMI Scheduler and Request Queue

Each request to an active objects gets queued irRetpiestQueue as an
aRmi_Request object which represents the client’'s remote method invocation in the
form of a message containing the type and signature of the method and the serialized
arguments listargs , in the form of anObject array. While executing inside the
scheduler method, the active object can examineRigguestQueue by peeking

into the request objects and possibly select one based on the signature of the
requested method, or the contents of its actual parameters and finally serve the request
by invoking the request objecerve method. To access the signature and then the
k-th parameter of the earliest call in the request queue following code segment can be
used:

aRmi_Request aRequest = RequestQueue. getFirst  ();
String sig = aRequest. getMethodSignature  ();
Object argK = aRequest. args [k-1];
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The actual parameters of the call are available in the pObjext]] component,

args . All primitive-type arguments are stored as objects using their
java.lang.  primitive wrapper classes, and can obtained by unwrapping from its
object format. The signature stored in the request can be used to enforce type checking
when unbundling the parameters. TRequestQueue  supports the standard
java.util. Enumeration interface to iterate over its elements as well as providing
several convenience functions, for example:

aRequest = RequestQueue. getFirst  ();
aRequest = RequestQueue. getFirst  (“foo”);

aRequest = RequestQueue. getFirst  (“foo(int)");

the no-arg version afetFirst() method dequeues and returns the first request in
RequestQueue . The getFirst(“foo”) call scans and returns the first request in
RequestQueue whose target method’s name fsd' . The third variant returns the

first request in the queue whose signature matches “foo(int)”. If there are no pending
requests or no match is foundnall  value is returned. ThegetLast()  method is
provided with a similar semantics except that ReuestQueue is scanned in
reverse order. Other variants for queue acpes&First  andpeekLast methods,

return a request object without dequeueing. Further synchronization methods provide
waiting behavior which block until a particular request type arrives intRdbeest-

Queue:

waitForRequest  (); /I any request
waitForRequest  (“foo”);// any foo request

waitForRequest  (“foo(int)”);// any foo(int) request.

4.7.5 Request Handling And Synchronization Support

EachActive-RMIrequest object is associated with a thread which has been suspended
just before it began to execute the target method with the passed arguments. Once a
decision is made to serve the request, the thread can be resumed by:

thisRequest.  serve ();

which executes the target method of the current active object with the actual argu-
ments, and then asynchronously sends the request back to the client which had
invoked the remote method.
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4.8 Implementation and Performance Issues

The latestActive-RMIsystem uses the standard Java RMI remote reference layer as a
transport layer. The prototype implementation is written entirely in pure Java and has
been tested using Sun Microsystem’s Java Developers Kit, JDK 1.1 and 1.2 releases
on machines running various Windows and Solaris O/S flavors. The dependence on
standard RMI support has the following implications: synchronous Active-RMI
remote calls are at best only as efficient as standard RMI calls; performance and porta-
bility of Active-RMI protocol will always benefit from enhancements and deployment

of Sun’s Jav&rkMI infrastructure. Our key performance objective is to incur negligible
run-time overhead foActive-RMiIcalls in excess of the stand&il runtime over-

head. We discuss how we attain our objectives by briefly outlining\ttige-RMI
activities on the client and the server.

On the client side the the only additional overhead is due to creation of a unique call
identifier (standard object creation) and its registration with the call registry (hashtable
insertion and lookup). Communication layer and marshalling costs within the stub
methods are identical to standdll calls. Client side thread creation overhead is
minimized by a demand based scheme: a new client side thread is created only when a
getResulbperation blocks because the remote result is not ready. Further optimization
is possible (though not implemented in current implementation) by using shared
thread pools and management techniques.

Server sideActive-RMloverhead is primarily due to the creationrefuestobjects

and the related queue management overhead insidEhleeulermethod. The only

thread created by thi&ctive-RMIsystem is at setup time, during the creation of the
active objecschedulerthread. StandarBMI runtime already creates a dedicated 1/O
thread for dispatching remote request messages to their target object’s skeleton meth-
ods, so no new additional thread creation is performeddiye-RMI The skeleton
method simply suspends the current dispatch thread after enqueueing the request to the
request queue. The schedwdervesa request simply by resuming the susperiiedl

dispatch thread.

4.9 Summary

We have introduced Active Remote Method Invocation syskatiye-RM| as a set

of class libraries, tools, and a design method for building distributed applications using
an active remote object abstraction in J&aive-RMIprovides a very high level of
programming for writing complex object distribution and synchronization applications
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entirely in Java. Three key abstractions provided byAtt/e-RMImodel are: the

active remote objects with user level scheduling; asynchronous method invocation
with data-driven, non-blocking synchronization using call-handles; and transparent
remote object creation. The first two abstractions allow us to support both reply and
request schedulindgReply schedulings the control the client has over the delivery of
reply/result, which we address by the asynchronous remote method invocation mecha-
nism and by providing both blocking and non-blocking result handling capability
using call-handlesRequest scheduling the control the active object server has over

the acceptance and serving of incoming requests. We support request scheduling by
delivering the requests to an active server object’s private request queue, and by pro-
viding ascheduler method abstraction for coding active object behavior with run-
time support to access its own request queue and to make autonomous scheduling
decisions. Our approach provides a mechanism for dealing with local delays, which is
deemed essential in Liskov et al.’s[46] formulation of concurrency requirements for
developing client/server type distributed programs.

Having a designatescheduler —method with run-time request queue access helps
coding complex synchronization specifications externally to the object’s methods and
thus helps enhance maintainability and reusability. The separation of synchronization
and functional specifications is not only useful for reducing complexity but also
allows our model to easily prograeggent-likeactive objects.

An important area of further study for us is the security modeling. We have currently a
rather strict security mechanism based on the RMI security model, however, it is desir-
able to have less rigid authorization and security abstractions.

Performance is a critical mission of tetive-RMI system development, and our
implementation and design approach incurs minimal cost on top of underlying the
Java RMI system overhead.

An issue that needs further investigation is identifying the synchronization and cor-
rectness needs in the presence of multi-threaded schedulers. We are attempting to gain
more insight by building systems basedfative-RMland comparing with alternative
approaches.
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Chapter 5

jContractor: A Reflective Java Library
for Design by Contract

5.1 Introduction

In this Chapter we discuss the design and implementatiggoofractor, a purely
library-based system and a set of naming conventions to supgsign By Contract

in Java. ThecContractor system does not require any special tools such as modified
compilers, runtime systems, modified JVMs, or pre-processors, and works with any
pure Java implementation. Therefore, a programmer can pr@egign By Contract

by using thgcontractor library and by following a simple and intuitive set of conven-
tions.

Each class and interface in a Java program corresponds to a translation unit with a
machine and platform independent representation as specified by the Java Virtual
Machine (JVM)class file format [45]. Each class file contains JVM instructions
(bytecodes) and a rich set of meta-level informatiommtractor utilizes the meta-level
information encoded in the standard Java class files to instrument the bytecodes on-
the-fly during class loading. During the instrumentation progesgactor parses each

Java class file and discovers tlwentractor contract information by analyzing the
class meta-data.

The jcontractor design addresses three key issues which arise when adding contracts to
Java: how to express preconditions, postconditions and class invariants and incorpo-
rate them into a standard Java class definition; how to reference entry values of
attributes, to check method results inside postconditions using standard Java syntax;
and how to check and enforce contracts at runtime.
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A discussion of key Design By Contract abstractions is introduced in Chapter 2 sec-
tion titled “Design by Contract Abstractions” on page 30. In this chapter we first give
a brief overview ofContractor's approach and in the subsequent sections discuss design
and implementation details.

5.2 jContactor Overview

jContractor provides an intuitive set of high-level programming abstractions to define
and perform runtime checking of Design by Contract specifications.

* Programmers add contract code to a class in the form of methods followaing
tractor's naming conventiongontract patternsThejContractor class loader rec-
ognizes these patterns and rewrites the code to reflect the presence of contracts.

 Contract patterns can be inserted either directly into the class or they can be writ-
ten separately asantract classvhere the contract class' name is derived from
the target class usingontractor naming conventions. The separate contract class
approach can also be used to specify contracts for interfaces.

* The jContractor library instruments the classes that contantractpatternson
the fly during class loading or object instantiation. Programmers enable the run-
time enforcement of contracts either by engagingidhetractor class loader or
by explicitly instantiating objects from theontractor object factory. Program-
mers can use exactly the same syntax for invoking methods and passing object
references regardless of whether contracts are present or not.

* jContractor Uses an intuitive naming convention for addprgconditions, post-
conditions class invariantsfecoveryandexception handlingn the form ofpro-
tected methods. Contract code is hence distinguished from the functional code.
The name and signature of each contract method determines the actual method
with which the contract is associated.

* Postconditionsandexception handlersan access thald value of any attribute
by using a special object referenc#,0 For exampleOLD.count returns the
value of the attributeount just prior to the execution of the methgcbntractor
emulates this behavior by transparently rewriting class methods during class
loading so that the entry values®@£Dreferences are saved and then made avail-
able to the postcondition and exception handling code.

* jContractor provides a classRESULT, and astatic method, Compare.
Inside a method's postconditi@ESUL T.Compare( <expression> returnstrue or
falseby comparing the value of tk@xpression> to the current result.
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5.3 jContractor Library and Contract Patterns

jContractor is a purely library-based approach to support Design By Contract constructs
using standard Java. Table 2.4, “Overview of jContractor Design By Contract
Abstractions,” on page 34 contains a brief summary ofj&estractor constructs and
patterns.

A programmer writes a contract by taking a class or method namguusayhen
appending a suffix depending on the type of constraint, BesCondition , to write

the put_PreCondition. Then the programmer writes the method body describing
the precondition. The method can access both the argumentspit tleethod with

the identical signature, and the attributes of the class. \Whetactor instrumentation

is engaged at runtime, the precondition gets checked each timputhenethod is
called, and the call throws an exception if the precondition fails.

The code fragment in Figure 5.1 showgaentractor based implementation of tipat

method for theDictionary ~ class. An alternative approach is to provide a separate
contract classDictionary CONTRACT , as shown in Figure 1-b, which contains the
contract code using the same naming conventions. The contract class can (optionally)
extend the target class for which the contracts are being written, which is the case in
our example. For every class or interfacthat thejContractor ClassLoadedoads, it

also looks for a separate contract clasSCONTRAGTand uses contract specifications
from both X and X_CONTRACTif present) when performing its instrumentation. The
details of the class loading and instrumentation will be presented in subsequent sec-
tions.
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Figure 5.1: Dictionary Class Implementing Contract fat Method

class Dictionary... {
protected Dictionary OLD;
Object put (object x, String key)

{
putBody();
}
protected boolean put_PreCondition (object x, String key)
{
return( (count <= capacity)
&& !(key.length() == Q));
}
protected boolean put_PostCondition (object x, String key)
{
return( (has(x))
&& (item(key)== x)
&& (count == OLDcount +1))
}
protected boolean Object put_OnException (Exception e)
throws Exception
{
count = OLD.count;
throw e; /Irethrow exception.
}
protected boolean Dictionary_ClasslInvariant 0
{
return(count >= 0);
}
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Figure 5.2: Separate Contract Class foictionary

Class Dictionary CONTRACT extends Dictionary...

{
protected boolean put_PostCondition (Object x, String key)
{
return ((has(x)) && (item(key)==x) && (count== OLDcount+1)
}
protected boolean Dictionary_ClassInvariant 0f
return(count >= 0);
}
}

5.3.1 Runtime Contract Monitoring

In order to enforce contract specifications at run-time, the contractor object must be
instantiated from an instrumented class. This can be accomplished in two possible
ways: (1) by using thggontractor class loademhich instruments all classes containing
contracts during class loading; (2) by using a factory style instantiation usif@the
tractor library.

The simplest and the preferred method is to usgcmractor class loadersince this
requires no changes to a client’s code. The following code segment shows how a client
declares, instantiates, and then us@scdonary  object,dict . The client's code
remains unchanged whethebntractor runtime instrumentation is used or not:

Dictionary dict; /I Dictionary (Figure-5.1) defines contracts.

dict = new Dictionary(); /l instantiates dict from instrumented or
// non- instrumented class depending on
Il jContractor class-loader being engaged.

dict.put(obj1,“namel”); /I If jContractoris enabled, put-contracts
I/l are enforced, i.e. contract violations
I/ result in an exception being thrown.

The second approach uses jhentractor object factory, by invoking itd/ew method.
The factory instantiation can be used when the client’s application must use a custom
(or third party) class loader and cannot j@zetractor class loaderThis approach also
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gives more explicit control to the client owehenandwhich objects to instrument.
Following code segment shows the client’s code usingctimractor factory to instan-
tiate an instrumentedictionary  object,dict :

dict = (Dictionary) jContractor. New(“Dictionary”);
/I instruments Dictionary

dict.put(objl,“namel”); Il put-contracts are enforced

Syntactically, any class containin@ontractor design-pattern constructs is still a pure
Java class. From a client’s perspective, both instrumented and non-instrumented
instantiations are still Dictionary objects and they can be used interchangeably, since
they both provide the same interface and functionality. The only semantic difference
in their behavior is that the execution of instrumented methods results in evaluating
the contract assertions, (e.@uyt PreCondition ) and throwing a Java runtime
exception if the assertion fails.

Java allows method overloadingontractor supports this feature by associating each
method variant with the pre- and postcondition functions with the matching argument
signatures.

For any method, safpo , of classx, if there is noboolean method by the name,
foo_PreCondition with the same argument signature, in eitkex CONTRACOr
one of their descendants then the default precondition fofothanethod is “true”.
The same “default” rule applies to the postconditions and class invariants.

5.3.2 Naming Conventions for Preconditions, Postconditions and Class Invari-
ants

The following naming conventions constitute tbentractor patterns for pre- and post-
conditions and class invariants:

Precondition protected boolean methodName + _PreCondition + ( <arg-list>)
Postcondition  protected boolean methodName + _PostCondition + ( < arg-list >)
Classlinvariant: protected boolean className  +_Classinvariant ()

Each construct’s method body evaluatémalean result and may contain references
to the object’s internal state with the same scope and access rules as the original
method. Pre- and postcondition methods can also use the original method’s formal
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arguments in expressions. Additionally, postcondition expressions can refer to the old
values of object’s attributes by declaring a pseudo obfadp with the same class
type and using th@LDobject to access the values.

5.3.3 Exception Handling

The postcondition for a method describes the contractual obligations of the contractor
object only when the method terminates successfully. When a method terminates
abnormally due to some exception, it is not required for the contractor to ensure that
the postcondition holds. It is very desirable, however, for the contracting (supplier)
objects to be able to specify what conditions must still hold true in these situations, and
to get a chance to restore the state to reflect this.

jContractor supports the specification of general or specialized exception handling code

for methods. The instrumented method contains wrapper code to catch exceptions
thrown inside the original method body. If the contracts include an exception-handler

method for the type of exception caught by the wrapper, the exception handler code
gets executed.

If exception handlers are defined for a particular method, each exception handler must
either re-throw the handled exception or compute and return a valid result. If the

exception is re-thrown no further evaluation of the postconditions or class-invariants is

carried out. If the handler is able to recover by generating a new result, the postcondi-
tion and class-invariant checks are performed before the result is returned, as if the
method had terminated successfully.

The exception handler method’s name is obtained by appending the suffix,
“_ OnException”, to the method’s name. The method takes a single argument whose
type belongs to either one of the exceptions that may be thrown by the original
method, or to a more general exception class. The body of the exception handler can
include arbitrary Java statements and refer to the object’s internal state using the same
scope and access rules as the original method itselficbheactor approach is more
flexible than the Eiffel's fescué mechanism because separate handlers can be writ-
ten for different types of exceptions and more information can be made available to
the handler code using the exception object which is passed to the handler method.
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5.3.4 Supporting Old Values and Recovery

jContractor uses a clean and safe instrumentation “trick” to mimic the Eiffel keyword,
old, and support Design By Contract style postcondition expressions in which one can
refer to the bld” state of the object just prior to the method’s invocation. The trick
involves using the "syntax notation/conventio@,D x to mean the value that x had

when method body was entered. Same notation is also used for method references as
well, e.g.,OLD.foo()  is used to refer to the result of calling the mentbey)

when entering the method. We will later explain how jttwtractor instrumentation
process rewrites expressions involviegDto achieve the desired effect. First we
illustrate its usage from the example in Figure 1. The class Dictionary first declares
oLD

private Dictionary OLD

Then, in the postcondition of thit method taking<Object x, String key>
arguments, the following subexpression is used

(count==0OLD . count+ 1)

to specify that the execution of the corresponding put method increases the value of
the object'scount by 1. HereOLD count refers to the value afount at the point
just before theut -method began to execute.

jContractor implements this behavior using the following instrumentation logic. When
loading the Dictionary clasgContractor scans the postconditions and exception han-
dlers for OLDusage. So, when it sees téeD.count in put_PostCondition it
inserts code to the beginning of th& method to allocate a unique temporary and to
save count to this temporary. Then it rewrites the expression in the postcondition
replacing theOLD.value subexpression with an access to the temporary. In summary,
the value of the expressia@l.D.expr (whereexpr is an arbitrary sequence of field
dereferences or method calls) is simply the valuexpf on entry to the method.

It is also possible for an exception handler or postcondition method to revert the state
of attr  to its old value by using theLDconstruct. This may be used as a basic recov-
ery mechanism to restore the state of the object when an invariant or postcondition is
found to be violated within an exception-handler. For example,

attr = OLD.attr;
or
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attr = OLD.attr.Clone();

The first example restores the object referencetfor to be restored, and the second
example restores the object state dar (by cloning the object when entering the
method, and then attaching the object reference to the cloned copy.)

5.3.5 Separate Contract Classes

jContractor allows contract specifications for a particular class to be externally pro-
vided as a separate class, adhering to certain naming conventions. For example, con-
sider a classX, which may or may not contaifContractor contract specifications.
jContractor will associate the class nam¢,CONTRAGTwith the class as a potential

place to find contract specifications f&r X CONTRACTmust extend classand use

the same naming conventions and notations developed earlier in this paper to specify
pre- and postconditions, exception handlers or class invariants for the methods in class
X

If the implementation clas¥ also specifies a precondition for the same method, that
precondition idogical-ANDed with the one inx_ CONTRACTuring instrumentation.
Similarly, postconditions, and class invariants are also combinedlagiogl-AND.
Exception handlers in the contract class override the ones inheritecfrom

The ability to write separate contract classes is useful when specifying contracts for
legacy or third party classes, and when modifying existing source code is not possible
or viable. It can be used as a technique for debugging and testing system or third-party
libraries.

5.3.6 Contract Specifications for Interfaces

Separate contract classes also allow contracts to be added to interfaces. For example,
consider thenterface IX and the clas€ which implements this interface. The
classiX_CONTRACTcontains the pre- and postconditions for the methots.iMeth-

ods defined in the contract class are used to instrument the class “implementing” the
interface.

interface IX

{

int foo (<args>);
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}

class IX_CONTRACT
{

protected boolean foo_PreCondition  (<args>){...}
protected boolean foo_PostCondition (<args>){ ... }

}

Contracts for interface classes can only include pre- and postconditions, and can only
express constraints using expressions involving the method's arguments or interface
method calls, without any references to a particular object state. If the implementation
class also specifies a precondition for the same method, the conditiologjiasad-
AND'ed during instrumentation. Similarly, postconditions are also combined using
logical-AND.

5.4 Design and Implementation ofiContractor

The jcontractor package usedava Reflectiorto detect Design By Contract patterns
during object instantiation or class loading. Classes containing contract patterns are
instrumented on the fly using th€ontractor library. We begin by explaining how
instrumentation of a class is done using the two different mechanisms explained in
section 2.1. The rest of this section explains the details of the instrumentation algo-
rithm.

The primary instrumentation technique uses jtwetractor class loaderto transpar-

ently instrument classes during class loading. The scenario depicted in Figure 5.3
illustrates how thgcontractor Class Loadepbtains instrumented class bytecodes from
the jContractor instrumentorwhile loading clas$oo. The jContractor class loader is
engaged when launching the Java application. The instrumentor is passed the name of
the class by the class loader and in return it searches the compiledatagsr jcon-

tractor contract patterns. If the class contains contract methods, the instrumentor makes
a copy of the class bytecodes, modifying the public methods with wrapper code to
check contract violations, and returns the modified bytecodes to the class loader. Oth-
erwise, it returns the original class without any modification. The object instantiated
from the instrumented class is shown asRbe<Instrumented > object in the dia-

gram, to highlight the fact that it is instrumented, but syntactically iFisoaobject.
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Figure 5.3:jContractor Class Loader based Instrumentation

class Foo CONTRACT
- class Foo

/I Instrumented version
(...
Tm() {
T om() {.} /1 additional checks

/I for pre, post cond’s
/I and invariants

}

class Foo

protected boolean
m_PreCondition() {...}
...m_PostCondition() {...}

——

}

...Foo_Classinvariant(){...}

I

Byte codes

Il Client code
Foo f;\ Foo /|
o jContractor jContractor
f=new Foo( ); €— ClassLoader Instrumentor
// fis instrumented Foo <instrumented>
Tres=f.m(); Foo <instrumented>

object

If the command line argument f@@ontractor is not present when starting up the appli-
cation, the user’s own (or the default) class loader is used, which effectively turns off
the jContractor instrumentation. Since contract methods are separate from the public
methods, the program’s behavior remains exactly the same except for the runtime
checking of contract violations. This is the preferred technique since the client’s code
is essentially unchanged and all that the supplier has to do is to gddrthetor con-

tract methods to the class.

The alternative technique is a factory style object instantiation usingcdéheactor
library’'s New method. New takes a class name as argument and returns an instru-
mented object conforming to the type of requested class. Using this approach the client
explicitly instructs jContractor to instrument a class and return an instrumented
instance. The factory approach does not require engagingdieactor class loader

and is safe to use with any pure-Java class loader. The example in illustrates the fac-
tory style instrumentation and instantiation using the ckags The client invokes
jContractor.New() with the name of the classFdo”. The New method uses theon-

tractor Instrumentor to create a subclassFob, with the namefFoo_Contractor

which now contains the instrumented versiorFod. New instantiates and returns a
Foo_Contractor ~ object to the client. When the client invokes methods of the
returned object as aFoo object, it calls the instrumented methods in
Foo_Contractor  due to the polymorphic assignment and dynamic binding.
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Figure 5.4:jContractor Factory Style Instrumentation and Instantiation

class

'

Foo_CONTRACT_

class Foo

'
T m() {.}

protected boolean
m_PreCondition() {...}
...m_PostCondition() {...}

...Foo_Classinvariant( ) {...}

}

sy

Contractor
Instrumentor :
‘Foo”

// client code
Foo f;

f = (Foo) jContractor’

class

OBject

Foa’ New (String

jContractor {

if (Instrument (className))

className ) {

class  Foo_Contractor
extends Foo
implements Contractor
Tm() {
/I additional checks
I/ for pre/ post cond's
Il and invariants
}
}

New (‘Foo"); bo_Contractdr  "eturn (Inftantiate( class"Name
Object } +”_Contractor );
/' m() is instrumented o
. Object
res=f.m(), . )
T f.m() Instantiate (String  className ) {...}
boolean
Instrument ( String  className) { ...}

The remainder of this section contains details of the instrumentation algorithm for
individual jContractor constructs.

5.4.1 Method Instrumentation

jContractor instruments contractor objects using a simple code rewriting technique. Fig-
ure 5.5 illustrates the high-level view of how to map code segments from original class
methods into the target instrumented versjOontractors key instrumentation policy is

to inline the contract code for each method within the target method's body, to avoid
any extra function call. Two basic transformations are applied to the original method's
body. First,return  statements are replaced by an assignment statement — storing the
result in a method-scoped temporary — followed by a laketek |, to exit out of the
method body. Second, references to “old” values, usingtlizobject reference are
replaced by a single variable — this is explained in more detail in Section 5.4.3.
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Figure 5.5:jContractor Instrumentation Overview

class Foo
{ private boolean
m_PreCondition (<args>) {

PreC

-~
L .

}

T m(<args>) {
Method
BODY

L .

}

Objectm_onException (E e)

{

Ex-hdlr

o
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}

private boolean
m_PostCondition (<args>)

{
}

private boolean
Foo_Classinvariant

{
}

4
4
4
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--—____‘
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class Foo // instrumented

{ T m(<args>)
{
Initializer for OLD refs
Check—®»{ Invariant
—~ —y
.
Check—; PreC
z
- 2
L — ‘
VR, N
P v  TRY— [ "Method
, BODY
A o
Exception Ex-hdlIr
Che& PostC
Check —» Invariant
return Result
}

A check wrapperchecks the boolean result computed by the wrapped block and
throws an exception if the resultfigse . A TRY wrappeexecutes the wrapped code
inside a try-catch block, and associates each exception handler that the contract speci-
fies with a catch phrase inside an exception wrapareption wrappersre simple

code blocks that are inserted inside the catch clause of a try-catch block with the

matching Exception

type. Typically, exception handlers re-throw the exception,

which causes the instrumented method to terminate with the thrown exception. It is
possible, however, for the exception handler to recover from the exception condition
and generate a result. Figure 5.5 illustrates the overview of these code wrapping trans-

formations.
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5.4.2 Instrumentation Example

In this section we show examples of a conceptual source-code level instrumentation
and then present a concrete byte-code level instrumentation based on current jContrac-
tor implementation. Figure 5.6 illustrates a Jagarce code-equivalewnf the Dictio-

nary Class (Figure 5.1 on page &8jer it is instrumented. Note that jContractor
instrumentation uses only the byte-codes in the Java class files, and generates instru-
mented byte-codes in Java class file format -- no source code (such as the one shown
in Figure 5.6) is ever generated, it is simply used here to illustrate the transformation
logic.
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Figure 5.6: Factory Instrumented Dictionary Class

class Dictionary_Contractor extends Dictionary ...{

Object put (Object x, String key)
{
Object $put_$Result;
boolean $put_PreCondition,
$put_PostCondition,
$Classlnvariant;
int  $OLD _$count = this.count;

$put_PreCondition = ( (count <= capacity)
&& (! key.length()==0) );

if ('$put_PreCondition) {
throw new PreConditionException();
}
$ClasslInvariant = (count >= Q);
if (I$ClasslInvariant) {
throw new ClasslnvariantException();

}
try {

}
catch (Exceptione){ // put_OnException

count=$0OLD _S$count; // restore(count)
throw e;

$put_$Result = putBody();

}
$put_PostCondition =((has(x)) && (item (key) == x) &&
(count == $OLD_S$count + 1));
if (!$put_PostCondition) {
throw new PostConditionException();
}
$ClasslInvariant = (count >= Q);
if (I$ClasslInvariant) {
throw new ClasslnvariantException();

}
return $put_$Result;

For a complete bytecode instrumention example see the simplified Dictionary imple-
mentation, shown in Figure 5.jContractor instruments the class put method to per-
form class invariant and post-condition checksla&aClassbytecode listing for the
instrumentegut method is shown in Figure 5.8.
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Figure 5.7: Simple Dictionary Class

public class dict

{

}

protected dict OLD;
protected int count =0,

capacity = loopCount;
Hashtable ht = new Hashtable(capacity);

public Object put(Object x, String key)
{
int i=0;
try {
count++;
/l insert <x,key> pair into the hashtable
return ht.put(x,key);
} catch (Exception e) {
System.out.printin(e);
}
return "Error in put("+x+", "+key+")";

}

protected boolean put_PostCondition(Object x, String key)
{
if (RESULT.compare(null)) {
System.out.printin("Result not NULL: <"+x+">");
return false;
}
return ( (has (x)) && (item (X) == key)
&& (count == OLD.count+1) );

}
protected boolean _Classlnvariant()
{
return (count >= 0 && capacity >= count);
}

private boolean has (Object x) {
if (ht.get(x) != null)
return true;
else
return false;

}

private Object item (Object x) {
return ht.get(x);
}
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5.4.3 Instrumentation of OLD References

jContractor takes the following actions for each uniq@d.D-expressioninside a
method's postcondition or exception handler code. Say the method's mapheaied

the expression i®LD.attr , andattr has type T, theyContractor incorporates the
equivalent of the following code while rewritingp():

T $OLD $attr = this . attr ;

The effect of this code is to allocate a tempordQL.D_$attr , and record the value

of the expressionattr , when the method code is entered. The code rewriting logic
then replaces all occurrences OL.D.attr  inside the contract code with the tempo-
rary variable$OLD_$attr whose value has been initialized once at the beginning of
the method's execution.

5.4.4 Instrumentation of RESULT References

jcontractor allows the following syntax expression inside a method's postcondition
method to refer to the result of the current computation that led to its evaluation:

RESULT Compare (expression)

RESULTIis provided as part of thieontractor library package, to facilitate this syntax
expression. It exports a singdeatic  boolean method,Compare() , taking a sin-

gle argument with one variant for each built-in Java primitive type and one variant for
the Object type. These methods never get invoked in reality, and the sole purpose of
having them (like theLDdeclarations discussed earlier) is to allow the Java compiler
to legally accept the syntax, and then rely on the instrumentation logic to supply the
right execution semantics.

During instrumentation, for each method declaratibnn() , a temporary variable
$m_$Result is internally declared with the same type,and used to store the result

of the current computation. Then the postcondition expression shown above is rewrit-
ten as:

($m_$Result == (T)(expression))
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Figure 5.8: Instrumented put Method

public Object put(Object, String)
Code(max_stack = 100, max_locals = 100, code_length = 318)

76:

79:

aload 0

getfield dict.count I (42) Class Invariant Wrapping

istore %5

aload_0O

invokevirtual  dict._ClassInvariant ()Z (35)

ifne #59

getstatic java.lang.System.out Ljava/io/PrintStream; (50)

new <java.lang.StringBuffer> (25)

dup

Idc "\njContractor Exception: Class Invariant VIOLATION: \nwhen: put(" (200)
invokespecial java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)

aload_1

invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
Idc ", " (9)

invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
aload_2

invokevirtual java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
Idc ", " (9)

invokevirtual java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
invokevirtual java.lang.StringBuffer.toString ()Ljava/lang/String; (57)

invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (53)

new <java.lang.RuntimeException> (182)

dup

ldc

"Class Invariant VIOLATION: put(Ljava/lang/Object;Ljava/lang/String;)Ljava/lang/Object;"
invokespecial java.lang.RuntimeException.<init> (Ljava/lang/String;)V (183)

athrow

nop

aload_0

dup

getfield dict.count | (42)

iconst_1

iadd

putfield dict.count | (42)

aload_0O

getfield dict.ht Ljava/util/Hashtable; (46)

aload_1

aload_2

invokevirtual java.util.Hashtable.put (Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
goto #123

astore_3

getstatic java.lang.System.out Ljava/io/PrintStream; (50)
aload_3

invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V (52)
new <java.lang.StringBuffer> (25)

dup

Idc "Error in put(" (12)

102



96:
99:

100:
103:
105:
108:
109:
112:
114
117:
120:
123:
124:
125:
127:
128:
130:
133:
134:
137:
138:
139:
140:
143:
146:
149:
150:
152:
155:
156:
159:
161:
164:
167:
170:
171:
174:
175:
176:
179:
182:
183:
184:
187:
188:
191:
192:
195:
197:
198:
199:
202:
203:
206:

invokespecial
aload_1
invokevirtual
Idc
invokevirtual
aload_2
invokevirtual
Idc
invokevirtual
invokevirtual
goto

nop

dup

astore
aconst_null
aload
if_acmpeq
iconst_0
goto
iconst_1

nop

nop

ifne

getstatic
new

dup

Idc
invokespecial
aload 1
invokevirtual
Idc
invokevirtual
invokevirtual
invokevirtual
iconst_0
goto
aload_0O
aload_1
invokespecial
ifeq

aload 0
aload_1
invokespecial
aload_2
if_acmpne
aload 0
getfield

iload
iconst_1
iadd
if_icmpeq
iconst_0
goto
iconst_1

java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)

java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
jélva(ﬁz)ing.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
jzlvz(fl)ang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)

java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
#123

%4

%4
#137

#138

#174
java.lang.System.out Ljava/io/PrintStream; (50)
<java.lang.StringBuffer> (25)

"Result not NULL: <" (14)
java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)

java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
ll>ll (10)

java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
java.io.PrintStream.println (Ljava/lang/String;)V (53)

#210

dict.has (Ljava/lang/Object;)Z (45)

#202

dict.item (Ljava/lang/Object;)Ljava/lang/Object; (47)

#202

dict.count | (42)

%5

#206

#210
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207:
210:
211:
214:
217:
220:
221:
223:
226:
227:
230:
232:
235:
236:
239:
241:
244
247:
250:
253:
254:

256:
259:
260:
261:
262:
265:
268:
271:
274:
275:
277:
280:
281:
284:
286:
289:
290:
293:
295:
298:
301:
304
307:
308:

310:
313:
314
315:
317:

goto

nop

ifne
getstatic
new

dup

Idc
invokespecial
aload 1
invokevirtual
Idc
invokevirtual
aload_2
invokevirtual
Idc
invokevirtual
invokevirtual
invokevirtual
new

dup

Idc

invokespecial
athrow

nop

aload_0O
invokevirtual
ifne

getstatic
new

dup

Idc
invokespecial
aload 1
invokevirtual
Idc
invokevirtual
aload_2
invokevirtual
Idc
invokevirtual
invokevirtual
invokevirtual
new

dup

Idc

invokespecial
athrow

nop

aload

areturn

#210

#260
java.lang.System.out Ljava/io/PrintStream; (50)
<java.lang.StringBuffer> (25)

"\njContractor Exception: POSTCONDITION EXCEPTION: \nwhen: put(" (204)
java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)

java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)

" (9)
java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)

java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
5 "(9)

java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
java.io.PrintStream.printin (Ljava/lang/String;)V (53)
<java.lang.RuntimeException> (182)

"POSTCONDITION EXCEPTION: put(Ljava/lang/Object;Ljava/lang/String;)Ljava/lang/Object;"

java.lang.RuntimeException.<init> (Ljava/lang/String;)V (183)

dict._ClasslInvariant ()Z (35)

#314

java.lang.System.out Ljava/io/PrintStream; (50)
<java.lang.StringBuffer> (25)

"\njContractor Exception: Classinvariant VIOLATION:\nwhen: put(" (208)
java.lang.StringBuffer.<init> (Ljava/lang/String;)V (33)

java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)

ll, " (9)
java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)

java.lang.StringBuffer.append (Ljava/lang/Object;)Ljava/lang/StringBuffer; (38)
" (9)

java.lang.StringBuffer.append (Ljava/lang/String;)Ljava/lang/StringBuffer; (39)
java.lang.StringBuffer.toString ()Ljava/lang/String; (57)
java.io.PrintStream.printin (Ljava/lang/String;)V (53)
<java.lang.RuntimeException> (182)

"Classlnvariant VIOLATION:put(Ljava/lang/Object;Ljava/lang/String;)Ljava/lang/Object;"

java.lang.RuntimeException.<init> (Ljava/lang/String;)V (183)

%4
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5.45 Use of Reflection

Each class and interface in a Java program corresponds to a translation unit with a
machine and platform independent representation as specified by the Java Virtual
Machineclass file format. Each class file contains JVM instructions (bytecodes)
and a rich set of meta-level information. During the instrumentation pri@eesactor

parses and analyzes the meta-information encoded in the class byte-codes in order to
discover thgcontractor contract patterns. When the class contains or inherits contracts,
jContractor instrumentor modifies the class bytecodes on the fly and then passes it to
the class loader. The class name and its inheritance hierarchy; the method names, sig-
natures and code for each class method; the attribute names found and referenced in
class methods constitute the necessary and available meta information found in the
standard Java class files. The presence of this meta information in standard Java class
byte codes and the capability to do dynamic class loading are essential to our way
building a pure-library basgdontractorimplementation.

Core Java classes include faea.lang.reflect package which provides reflec-
tion capabilities that could be used for parsing the class information, but using this
package would require prior loading of the class files into the JVM. &hoeeactor
completes its instrumentatidseforeloading the class files, it cannot use core reflec-
tion classes directly and instead uses its own class file parser.

5.5 Implementation and Performance Issues

jContractor is implemented entirely in Java and can be used with any JDK 1.1 or later.
It has been tested with the JDK 1.1 and 1.2 on Solaris, and Windows9x/NT and
jBuilder on Windows9x/NT. Current implementation uses BCEL: The Byte Code
Engineering Library (formerly known as JavaClass) libraries during instrumentation,
which must be installed separately. BCEL is a freely available open source project
under the dual GNU Lesser General Public License (LGPL) and the Mozilla Public
License (MPL).

Our performance studies show that jContractor instrumented class methods run more
efficiently than explicitly hand instrumented version of the methods performing func-
tionally equivalent run-time contract monitoring. We compared the performance of the
uninstrumented and instrumented versions of the Dictionary “put” operation shown in
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Figure 5.7 and Figure 5.8, respectively as well as the manual Design By Contract vari-
ant,put_HandCodedDBC shown in Figure 5.9

#operations No DBC Manual DBC Contractor DBC
10,000 3,265 +/- 25 4,010 +/- 50 3,920 +/- 20
50,000 9,100 +/- 30 22,650 +/- 20 22,200 +/- 20

Table 5.1: Execution Times for Dictionary “put” Operations (in ms)

The cost of checking for contract viloations using hand coded checks (Manual DBC)
is 18.6% - 22.8% of actual “put” processing time. Ugdgntractor reduces the con-

tract checking overhead by about 14% to 16.2%-20%. This example shows one of the
performance benefits of jContractor in addition to the convenience of on-the-fly
instrumentation. jContractor instrumentor optimizes contact enforcement code by
inlining and auto-allocating needed temporaries. Cost of runtime DBC checks appears
high using the Dictionary example, but the cost depends entirely on the actual pre-,
postcondition expressions. Evaluating Dictionary put post condition, for example,
checks whether the item is "in" the dictionary (i.e. 1 lookup), and also checks whether
the key-object association is correct which is another lookup. While these checks are
costly operations with respect to the basic put operation, the ability to effortlessly turn
contract checking on and off at runtime highlights another benefit of the jContractor
system during system debugging and testing.

Figure 5.9: Hand Coded Design by Contract Version of Dictionary Class

public class dict

{..
protected boolean put_PostCondition2(Object x, String key,

Object RESULT, int oldCount)

{
if (RESULT !=null) {
System.out.printin("Result not NULL: <"+x+">");
return false;
}
return (has(x) && (item (x) == key)
&& (count == oldCount+1) );
}
public Object put_HandCodedDBC(Object x, String key)
{

Obiject result = null;
int oldCount = count;

if (_ClasslInvariant()) {
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result = put(x, key);

if (_ClassInvariant()) {
if (!put_PostCondition2(x, key, result, oldCount))

{

System.out.printin("PostCondition violation");

}else {
System.out.printin("\nClass Invariant violation");
}

}else {
System.out.printin("\nClass Invariant violation");

}

return result;

5.6 Summary

We have introducegcontractor, a purely library-based solution to write Design By
Contract specifications and to enforce them at runtime using JavaiCcdiiector

library and naming conventions can be used to specify the following Design By Con-
tract constructs: pre- and postconditions, class invariants, exception handlensl and
references. Programmers can write contracts using standard Java syntax and an intui-
tive naming convention. Contracts are specified in the form of protected methods in a
class definition where the method names and signatures constititerthetor nam-

ing conventionsjContractor checks for these patterns in class definitions and rewrites
those classes on the fly by instrumenting their methods to check contract violations at
runtime.

The greatest advantage jobntractor over existing approaches is the ease of deploy-
ment. SincgContractor is purely library-based, it does not require any special tools
such as modified compilers, runtime systems, pre-processors or JVMs, and works with
any pure Java implementation.

The jcontractor library instruments the classes that contontract patternsduring

class loading or object instantiation. Programmers enable the run-time enforcement of
contracts by using aommand line switch at start-up, which installs bentractor
instrumenting class loadgiContractor object factory provides an alternative mecha-
nism that does not require engaging jbentractor ClassLoader to instantiate instru-
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mented objects. Clients can instantiate objects directly fronictineactor factory,

which can use any standard class loader and does not require a command line switch.
Either way, clients can use exactly the same syntax for invoking methods or passing
object references regardless of whether contracts are present or not. Contract viola-
tions result in the method throwing proper runtime exceptions when instrumented
object instances are used.

We also describe a novel instrumentation technique that allows accessihg)\tae

ues of variables when writing postconditions and exception handling methods. For
example,OLD.count returns the value of the attributeunt at method entry. The
instrumentation arranges for the attribute values or expressions accessed through the
OLDreference to be recorded at method entry and replaced thexpressions with
automatically allocated unique identifiers to access the recorded values.
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Chapter 6

Comparisons with Other Approaches
and Related Work

6.1 Library Based Language Extensions

Many statically typed general purpose programming languages use libraries to extend
the language with new features and functionality. For example, C and C++ rely on the
presence of externally linked system and run-time support libraries and standard appli-
cation programming interfaces (APIs) to support user-level operating system (O/S)
services and abstractions such as streams, files, file-systems, dynamic memory alloca-
tion, processes, threads, interprocess communication, networking, etc., For example,
standard 1/O libraries extend C language in such a way that most C programmers use
and think of these calls (printf, scanf, etc.,) as if they were part of the C language defi-
nition. Platform specific frameworks such as MFC, COM, OLE/ActiveX provide Win-
dows C/C++ programmers support for designing graphical user interfaces(GUI) and a
standardized component and communication model. AWT/JFC/Swing provide a plat-
form independent Java framework for designing GUIs. OMG's CORBA and
Microsofts DCOM provide language and platform independent frameworks for
developing distributed applications. Java has direct language support for threads and
implicit dynamic memory allocation, yet, relies on a rich set of libraries organized as
core language packages to support windowing abstractions, networking, imaging, etc.,

Many interpreted or scripting languages, such as Common Lisp, Tcl, and Perl, also use
a library based extension approach. Common Lisp extension CLOS provides object
orientation. Tcl extension, Tk, provides graphical and windowing support; Incr-Tcl
extension provides object-orientation. Perl uses packages to provide seamless access
to just about any operating system level function.
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Standardized libraries and frameworks typically offer a rich set of low level APIs to
offer greater control and flexibility, but tend to be error-prone as they assign signifi-
cant responsibility to a programmer to keep track of state, consistency, and correct
usage and require steep learning curves and a fair amount of commitment to a platform
even to perform fairly simple or common tasks.

Complex systems require higher levels of programming abstractions than those typi-
cally provided by standardized system level libraries and frameworks. The ideal way
to support high-level abstractions is to have direct language support. Language level
support can provide simplicity, safety and performance efficiency. Traditionally one
of the following approaches have been used to introduce new high-level language
abstractions:

1. Design a brand new language with new features and abstractions.

2. Extend an existing language with new and non-standard extensions using cus-
tomized compilers, preprocessors, or run-time environments.

Both of these approaches offer custom and dedicated solutions but this in itself may
cause problems. It may be impossible or impractical for programmers to migrate to a
new language and/or development or runtime environment. Maintenance, reliability,
security and future support issues might also hinder acceptance. In this dissertation we
have described techniques using an alternative approach:

3. Extend an existing object-oriented language using a purely library based
approach to provide new high-level abstractions.

We introduced new language extensions by designing class libraries and a set of nam-
ing and programming conventions fmyncurrency, distributed computiragnd design

by contractfor the object oriented languages, Eiffel and Java. In subsequent sections
of this chapter we present a comparison of each system with other related work in lit-
erature.

6.2 Introducing Concurrency to Sequential Object-Oriented Languages

6.2.1 Eiffel Concurrency Extensions

There are several proposals for concurrent programming with Eiffel: Eiffel// [18],
Meyer’s proposal [54], CEiffel [47], and Colin and Geib’s Concurrency Classes [25].
Our mechanism is most similar to Eiffel//. Primary differences are: our concurrency
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mechanism does not modify the Eiffel compiler, provides full support for coping with
local delays, and allows post-actions after returning results in active objects.

Meyer’s proposed extension to Eiffel also takes a process based approach that uses the
assertion mechanism of Eiffel for synchronization. Colin and Geib’s Concurrency
Classes do not modify the Eiffel language, similar to our approach, however they use a
single address space with light-weight threads, and have a very different approach in
the way they view an activity (or thread) independent from objects.

CEiffel is based on expressing concurrency properties attached to classes, or methods
in the form of annotations. CEiffel also provides strong support for reusability, includ-
ing a novel mechanism which allows concurrent objects to be reused as sequential
objects by a compiler switch which ignores the concurrency annotations. Both our
mechanism and Eiffel// differ from CEiffel and Colin and Geib’s model in not sup-
porting multiple-threads in active objects.

6.2.2 Related Work Introducing Concurrency to Object-Oriented Languages

Three distinct approaches exist for introducing concurrency to object-oriented sys-
tems:

 Design a neweconcurrent object-oriented language.
» Extendan existing object-oriented language.

* Design a Concurrency LibraryJse an existing object-oriented language and
provide concurrency abstractions through external libraries.

Many references and comparative discussions about general concurrent object-ori-
ented languages can be found in [3], and [61]. Most of the earlier systems fall into the
first approach: design a new object-oriented language with built-in concurrency. Some
examples are: Hybrid [57], POOL [5] (and its variants), SR [6], ABCL/1 [73] and Java
[31]. Thesenew languages provide powerful concurrency abstractions and general-
purpose programming capabilities. Most of #ensiongntroduce concurrency to

their respective languages using some combination of the following techniques:

* inheritancefrom special concurrency classes that the modified compiler recog-
nizes — e.g. Eiffel// [19] , PRESTO [8] ;

* special keywords, modifiers or preprocessing techniques to modify or extend the
language syntax and semantics — e.g. u C++ [14], CEiffel [48];
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* extension to the syntax and semantics of the language to support a general con-
currency paradigm such as the Actor model [2] — e.g. ACT++ [37], Actalk [11].

Our concurrency mechanism, and Colin and Geib’s [25] Eiffel Classes, fall in the
library approach The approach of introducing concurrency via a class definition of
Process is also used in t@Gloicesoperating system [16] where they use the C++ lan-
guage. The library based solutions are attractive since they do not replace the existing
software development platform. However, the sequential execution semantics of the
host language may impose restrictions on providing type-safety and intra-object con-
currency.

The order in which we have presented the three approaches follows a chronological
order. Most of the earlier concurrent object-oriented languagesngar&anguages.

As object-oriented thinking matured and sequential object-oriented languages started
to become popular, numerous proposals were madxtemdthese sequential lan-
guages for concurrent programming. TH®ary approachis most recent, and has
been influenced by most of the earlier work on concurrency. The latest trends for
object-based concurrency emphasize and address issues seigbahdityand com-
patibility with object-oriented software engineering techniques as fundamental
requirements [48], [58]. A major focus of our work has been to address the issues of
reusability and compatibility with the object-oriented paradigm.

Our concurrency mechanism fits into the non-uniform, and non-orthogonal category
of Papathomas’ classification of object-oriented concurrency approaches [61], since
we allow both active and non-active objects to co-exist and have single threaded active
objects. Some other languages that belong to this classification are POOL-T [5],
ABCL/1 [73], and Eiffel// [18]. The basic mechanism in our methodology to access
results of asynchronous calls, i.e. using¢hk ids returned byemotelnvoke , are

similar to the ConcurrentSmalltalk’s CBoxes [72] and ABCLALiture type mes-
sage$’3].

6.3 Distributed Computing and Active Object Extensions

Distributed computingises networking and communication to enhance a local compu-
tation by potentially distributing portions of the computation among different hosts;
or to collaborate with other executing programs towards accomplishing a global task.
What makes distributed programming challenging is the semantic gap between pro-
gramming language semantics involving local and remote computations and the com-
munication abstractions. Distributed programs require higher levels of abstractions
then TCP/IP or other basic networking protocols.
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Most distributed computing systems use widely available and standardized communi-
cation and distribution protocols: lower level mechanisms such as RPC[9] DCE[59] or
object-based distribution protocols such as CORBA[60], RMI[70], ILU[35],
HORB[67] or DCOM[10]. All of these systems add a distribution layer on top of a
general purpose programming language system: an intermed&tace definition
language(IDL) and an IDL-to-application language tool is provided to support cre-
ation of remote stubs/proxies, and for registering or locating remote interface imple-
mentation objects/servers. Numerous experimental and research prototypes exist:
distributed operating systems such as Sprite[27], Inferno[49] support distributed scope
and access primitives as operating system functions; languages such as Emerald[36],
Telescript[69], Agent-Tcl[32] are specifically designed for writing distributed applica-
tions.

Active Remote Method InvocatiepstemActive-RMI,is a set of class libraries, tools,
and a design method which collectively provides high-level abstractions for building
distributed Java applications based on the notiactive remote objectéctive-RMI

is a natural extension of our work involving introducing concurrency extensions to
Eiffel language using class libraries[4Rctive-RMIis implemented as an extension

to theJava RMIsystem without extending the Java Language[31] or its run-time envi-
ronment.Active-RMIprovides a very high level of programming for writing complex
object distribution and synchronization applications entirely in Java. Three key
abstractions provided by th&ctive-RMImodel are: theactive remote objectaith

user levelscheduling asynchronous method invocatianth data-driven, non-block-

ing synchronization; and transparegnote object creation

In this section we discuss languages or language extensions which provide program-
ming abstractions and services for building distributed, parallel and mobile applica-
tions.

6.3.1 Java Based Related Work

Java appears to be an ideal language for distributed computing with standard built-in
features: platform independence, multi-threading and synchronization constructs,
remote method invocation (RMI) system, dynamic and networked class loading. How-
ever, the abundance of distributed computing extensions for Java discussed in this sec-
tion indicate the need for additional and higher-level abstractions. Also, Brose et.al.
show that [12,13] that Java’s method-calling semantics, pass-by-value, lead to unac-
ceptable latencies when accessing arrays, and even class instances. Java, even with
RMI, does not exhibit access transparency, or identical method calling syntax and
semantics for both local and remote objects.
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ProActive PD(20] is the most similar approach to Active-RMI. ProActive PDC (for-
merly known as Java//) is a library for Parallel, Distributed, and Concurrent program-
ming in Java. It is entirely API-based, needing no special compiler or JVM. The idea is
to run the same program as a sequential application, a multithreaded single-node appli-
cation, and a distributed application. The programmer provides hints to the system
through its API, and also uses the API to get implicit futures (using wait-by-necessity),
continuations (a transparent delegation mechanism), and active objects. Running a
program on the different kinds of platforms supported by ProActive PDC is achieved
through object composition. The user defines a sequential object, which the system
then composes with a proxy and a so-called body. The proxy turns local calls into mes-
sages, which are decoded by the body. Futures and continuations are provided by cre-
ating specialized subclasses of user objects which contain the appropriate code.

Sumatrais an extension of Java that supports resource-aware mobile programs.
Sumatra has not modified Java language syntax and can run all legal Java programs
without modification. All added functionality is provided by extending the Java class
library and by modifying the Java interpreter, without affecting the virtual machine
interface. Sumatra adds four programming abstractions to Java: object-groups, execu-
tion-engines, resource-monitoring and asynchronous events. Computation begins at a
single site and spreads to other sites in three ways: (1) remote method instantiation, (2)
remote thread creation, and (3) thread migration. Active-RMI directly supports the
first two mechanisms. Remote method instantiation is essentially an RMI style syn-
chronous remote method invocation. Remote thread creation differs from remote
method instantiation in that the new thread is independent of the creating thread; the
creating thread continues execution once the creation is complete. This is very similar
to Active-RMI aynchronous remote method call, except that remote execution is per-
formed within a previously created active object context. Active-RMI does not
directly support thread migration which involves stopping the execution of the calling
thread at the current site, transferring its state to another site and resuming execution at
that site. Sumatra uses a master daemon which runs on all machines that allow creation
of execution-engines and listens on a well-known socket. When a execution-engine
creation request is received, it creates a new interpreter process which attempts to bind
to specified socket. This daemon is very similar to the Active-RMHsiServerutil-

ity.

TheKan system [34] extends Java language with asynchronous method calls (used for
expressing concurrency), guards (used for expressing dataflow and synchronization
constraints), and nested atomic transactions (used for expressing atomicity). Kan hides
distribution, replication, migration, and faults from the programmer when writing par-

allel and distributed applications. Kan extends Java’s syntax and relies on a special-
ized compiler which produces standard Java bytecodes, containing calls into the Kan
runtime system. That system itself is written in pure Java, so the system and user
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applications run on any standard Java Virtual Machine, using Java sockets for commu-
nication.

cJVM[7] distributes the JVM onto homogeneous clusters of computers on a high-
speed network, and runs unmodified Java programs on each JVM. It was designed to
support servers, by distributing the server load across the cluster. Hence, it performs
best on applications with a large number of independently executing threads.

Do! [44] uses a modified Java compiler to automatically generate distributed code
from multithreaded program source code. The Java language is not extended, but the
user is given an API for providing hints to the compiler about appropriate mappings of
threads and objects to distributed system nodes. The generated code uses standard Java
RMI for communication. It uses a runtime library that supports the creation and
manipulation of remote objects.

JavaParty[62] is an extension to Java. It adds transparency to remote objects, bypass-
ing the complexity of RMI. It also transparently migrates objects for greater availabil-
ity. JavaParty compiles down to standard Java bytecodes, allowing JavaParty
programs to run on any JVM. It also supports easy integration of standard Java class
files, compiled externally to the JavaParty system. The JavaParty project has produced
improved Serialization [63] and RMI [56] implementations. However, their solutions
are not portable across JVMs.

Javelin[24] is a prototype infrastructure for Internet-based parallel computing using
Java. In Javelin model there are three kinds of participating entities: brokers, clients
and hosts. Javelin allows machines connected to the Internet to make a portion of their
idle resources available to remote clients and at other times utilize resources from
other machines when more computational power is needed. Javelin system provides a
parallel programming language layer which offers support for the SPMD program-
ming model and Linda Tuple Space from within an applet. Javelin describes simple
programming models that enable programmers to express many parallel programming
constructs in their client applet code. These programming models are realized by exe-
cuting specialized servlets on the broker. Standard Java language and syntax is used.

Nile [66] project provides a self-managing, fault-tolerant, heterogeneous system com-
posed of hundreds of commodity workstations, with access to a distributed database
whose size is on the order of hundreds of terabytes. It is written in Java for heterogene-
ity. CORBA is used as a data management layer. It is structured to run embarrassingly
parallel applications; i.e., those with independent parallel subtasks, such as web index-
ers. The database itself is widely distributed, with replication providing some degree
of fault tolerance. The failure of a job is automatically detected, and the job is restarted
if the failure can be repaired or worked around. The basic operation of Nile is to divide
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the application into subparts and distribute those subparts to the constituent computing
nodes, then collect and collate the results. If a subpart fails, recovery consists of
assigning the subpart to a new computing node.

Parallel Java[38] is an extension to the Java language to support parallel constructs. It
is based on earlier work on a C++ extension, called Charm++. The parallel extensions
provide for the creation of remote objects via proxies, with automatic load balancing.
Objects with a port on every node are called object groups, and allow for easy expres-
sion of algorithms requiring global coordination, such as barriers. Parallel Java is part
of a larger effort, named Converse, which is aimed at providing multilingual parallel
support. That is, Parallel Java programs can interact with parallel libraries written in
other languages supported by Converse. Parallel Java uses Java Serialization and
Reflection to provide portable means of accessing remote objects.

6.3.2 Other Languages and Systems

Compositional C++ (CC++) [22] is a superset of C++, adding the keywords sync, glo-

bal, par, parfor, atomic,and spawn. It provides support for explicit parallelization of
programs by way of declaring blocks of code as parallel, in either a synchronous or
asynchronous manner. Loops can be declared as parallel as well. Synchronization is
provided in the form of atomic methods. The C++ language is extend to provide global
pointers to CC++ objects. Each main process is itself an object, which allows pro-
cesses to operate on one another. The consistency guarantee is cache consistency (see
Section 6.2.5), a fairly weak guarantee. CC++ is a parallel language able to specify
blocks of code as atomic, construct global pointers to objects, and spawn new threads
at the language level.

Charm++ [39] is a C++ extension. The basic unit of computation is the chare. A chare
can be located on a specific node, or it can be a branch office chare, with local compo-
nents on every node. A number of common modes of information sharing are sup-
ported by means of shared variables. Several types are available, including read-only
variables, accumulator variables, monotonic variables, write-once variables, and dis-
tributed tables. In general, an object can choose its own method ordering protocol
through system calls that indicate the messages which the object is willing to receive.
It does so by expressing the method protocol dependencies as a directed acyclic graph.
However, there is no intra-object concurrency possible and no values can be returned
in response to a message (i.e., concurrent methods all have return type void). The con-
sistency guarantee is broadcast consistency.
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COOL [21] is a specialized language which supports concurrent method execution in
an object that adheres to the multiple reader-single writer protocol. This is done by
specifying a method to be either of type mutex (writer) or non-mutex (reader). The
COOL runtime system then ensures this consistency model by using read and write
locks. Intra-object concurrency is supported. Condition variables and monitors are
used to implement inter-object communication. While these provide synchronization,
they are unable to pass values back (that is, concurrent methods cannot return values).

Concert [23] supports distributed objects with an aim towards providing fine-grained
parallelism. Object-based concurrency control and encapsulation, and a dynamic con-
currency model are provided. The thrust of the project is to use aggressive whole pro-
gram compilation, interprocedural optimization, and an efficient runtime system
which works in concert with the compiler optimizations.

Emerald [36] is a strongly-typed pure object-oriented language. Objects can migrate
between nodes. Objects can be declared immutable, which simplifies sharing. There is
both inter-object and intra-object concurrency. Objects can be declared as monitors,
which simplifies handling intra-object concurrency. Objects with a process (executing
in parallel with the monitor) are active; those without a process are passive. All
method calls are synchronous; new threads of control arise by creating a new active
object. A garbage collector reclaims unreferenced objects.

Oblig [17] is a language based on Modula-3 which supports distributed object-ori-
ented programs through migrating threads. A computation can roam over the network,
while maintaining connections between its constituent parts. Objects are local to some
computing node, but threads migrate. Hence, a distributed computation consists of the
migration of a thread over the necessary set of objects. Oblig is a lexically-scoped
untyped interpreted language. It contains a notion of hierarchical spaces; an Obliq
computation may involve multiple threads of control within an address space, multiple
address spaces on a machine, heterogeneous machines over a local network, and mul-
tiple networks over the Internet.

6.4 Extensions for Design by Contract

The idea of associating boolean expressions (assertions) with code as a means to argue
the code’s correctness can be traced back to Hoare [33] and others who worked in the
field of program correctness. The idea of extending an object-oriented language using
only libraries and naming conventions appeared in [41]. The notion of compiling
assertions into runtime checks first appeared irktffel language [52].

117



Eiffel is an elegant language with built-in language and runtime support for Design By
Contract. Eiffel integrates preconditionsrequire-clausg postconditions gnsure-
clausg, class invariantxld andrescue/retryconstructs into the definition of methods
and classes,contractor is able to provide all of the contract support foundtiifel,

with the following differences;jcContractor supports exception-handling with finer
exception resolution — as opposed to a singdeueclause;jContractor does not sup-

port theretry construct ofEiffel. We believe that if such recovery from an exception
condition is possible, it is better to incorporate this handler into the implementation of
the method itself, which forestalls throwing the exception ajcalbtractor’ support for

old supports cloning semantics where references are involved, while Eiffel does not.

Duncan & Hdlzle introduced Handshake[28], which allows a programmer to write
external contract specifications for Java classes and interfaces without changing the
classes themselves. Handshake is implemented as a dynamically linked library and
works by intercepting the JVM’s file accesses and instrumenting the classes on the fly
using a mechanism called binary component adaptation (BCA). BCA is developed for
on the fly modification of pre-compiled Java components (class bytecodes) using
externally provided specification code containing directives to alter the pre-compiled
semantics [42]. The flexibility of the approach allows Handshake to add contracts to
classes declarefthal ; to system classes; and to interfaces as well as classes. Some
of the shortcomings of the approach are that contract specifications are written exter-
nally using a special syntax; and that Handshake Library is a non-Java system that has
to be ported to and supported on different platforms.

Kramer’'siContractis a tool designed for specifying and enforcing contracts in Java
[43]. UsingiContract pre-, postconditions and class invariants can be annotated in the
Java source code as “comments” with tags such as: @pre, @postontract tool

acts as a pre-processor, which translates these assertions and generates modified ver-
sions of the Java source codE€ontract uses its own specification language for
expressing the boolean conditions.

Mannion and Philips have proposed an extension to the Java language to support
Design By Contract [50], employingiffel-like keyword and expressions, which
become part of a method’s signature. Mannion’s request that Design By Contract be
directly supported in the language standard is reportedly the most popular “non-bug”
request in the Java Developer Connection Home Page (bug number 4071460).

Porat and Fertig propose an extension to C++ class declarations to permit specification

of pre- and postconditions and invariants using an assertion-like semantics to support
Design By Contracf64].
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Chapter 7

Conclusion

The original research work conducted as part of this dissertation introduced new lan-
guage extensions for concurrency, distributed computing and design by contract for
the object oriented languages, Eiffel and Java. We demonstrated that powerful new
abstraction capabilities can be introduced using a purely library based approach and a
set of naming and programming conventions without violating the object-oriented
principles or compromising other language or safety features.

We developed techniques to build extensible, open object-oriented libraries that use
and take advantage of the existing low-level system and vendor libraries, platforms,
frameworks to support several new high-level abstractions. Programmers use these
abstractions by following our naming and programming conventions. We illustrate the
applicability of our approach by building and presenting three original research appli-
cation systemsClass CONCURRENCY, Active-RMihd jContractor Class CON-
CURRENCYintroduces concurrency, active objects, asynchronous calls, data-driven
synchronization and scheduling abstractions to Eifietive-RMI introduces asyn-
chronous remote method invocation with future-type results; asynchronous result
delivery; transparent remote-object creation; active-object semantics; user program-
mable scheduling and synchronization to Jg@antractorintroducedesign by Con-

tract to Java. Table 1.1, “Overview of Dissertation Research.,” on page 6 lists feature
outline of these three systems we have built and the new abstractions we introduced
for each system.

TheClass CONCURRENCHfovides concurrency, active objects, asynchronous calls,
data-driven synchronization and scheduling abstractions to Eiffel objects as encapsu-
lated and inheritable properties. Objects which inherit from GQless CONCUR-
RENCY acquire a separate thread and private state and become active with a
programmable scheduler. Active objects’ methods can be called asynchronously using
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deep-copy pass-by-value semantics for normal object arguments and reference passing
semantics for active object arguments.

Active-RMlextends Java with asynchronous remote method invocation & future-type
results; asynchronous result delivery; transparent remote-object creation; active-object
semantics; user programmable scheduling and synchronizAtitive-RMI objects

are started as autonomous agent-like objects, with complete, user programmable con-
trol over scheduling and execution of incoming requests.

jContractor is a pure Java library which requires no special tools such as modified
compilers, modified JVMSs, or pre-processors to support Design By Contract con-
structs: preconditions, postconditions, class invariants, recovery and exception han-
dling. jContractoruses an intuitive naming convention, and standard Java syntax. The
designer of a class specifies contracts by providing contract methods foli@Geimg

tractor naming conventionsjContractor uses Reflection to synthesize an instru-
mented version of a Java class by incorporating code that enforces the present
jContractor contract specifications. Programmers enable the run-time enforcement of
contracts by either engaging {@ontractorclass loader or by explicitly instantiating
objects using th@ontractor object factory. Programmers can use exactly the same
syntax for invoking methods and passing object references regardless of whether con-
tracts are present or not.

Our work illustrates advantages of employing libraries to support new abstractions and
functionality: the core languages are left in tact allowing programmers to use their
standard development tools and environments. Developing the libraries independently
as a layer above the native O/S or language services leads to performance efficiency,
portability and ease of development and maintenance.

We have identified the following advantages for using the pure library based approach
when introducing new high-level programming abstractions to an object-oriented lan-
guage:

* Libraries provide a morexible andextendiblesolution since they can be tai-
lored to the specific needs and characteristics of the target operating system and
hardware by modifications or refinement of the libraries. New abstractions that
are hard wired into the language may be impractical or impossible to change. A
similar analogy exists in the operating system research. It is more desirable to
implement smaller (micro) kernels that move a lot of the traditional kernel
abstractions and services out of the kernel (and implement as application-level
processes) in favor of reduced complexity and size and enhanced flexibility —
even though it might have been more efficient to provide these services within a
larger, monolithic kernel.

120



* Reuse of existing librariesan be supported after new features are introduced.
Radical changes to the language and the object model may render existing code
obsolete. Henceeusabilityis improved.

* It is morepractical andeasierto design and maintain a library than inventing a
new concurrent object-oriented language, or modifying an existing langndge
its compiler (even when there are compilers available for modifications).

* By using a strictly object-oriented technique — designing reusable libraries — to
introduce new abstractions and keeping the original language in tagtirtbie
ples of object-oriented programming and desaga not violated.

» Adding new features by modifying the language may add a great d=ahef
plexityand restrictions to its future evolution. It might even be impossible or dif-
ficult to port the language to new hardware or operating system platforms with
the added concurrency specifications. Libraries offer a modular and robust mech-
anism for supporting constantly evolving hardware and O/S platforms.

* Object-oriented libraries support user level extensions.

* Object-oriented libraries can support systematic layered views allowing different
levels of abstractions to be delivered to different types of users. While the casual
user can use the high-level abstractions, more sophisticated users can use (and
reuseg the entire library, with all of its lower-level abstractions (such as IPC, O/S
interaction, etc.,.) and extend or design new higher-level abstractions.

* Designing libraries can help the language designer from fully committing to a
specific solution.

*» Usersare less likely to switch to a non-standard language extension that is cus-
tomized for programming especially if switching would require also switching
(or abandoning) tools and existing libraries. Whereas library based extensions
can be easily incorporated to the user’s programming environment.

7.1 Summary of Key Contributions

» We have shown by way of designing and implementing how class libraries and
associated programming and naming conventions can be used to introduce new
abstractions to object-oriented languages.

» We have introduced high-level concurrency abstractions: active objects, asyn-
chronous calls, data-driven synchronization and scheduling to Eiffel by design-
ing and implementing thElass CONCURRENCY

» We have introduced high-level distributed computing abstractions: active
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objects, asynchronous calls, data driven synchronization, scheduling, remote
object creation by designing and implement#wgive-RMIsystem.

* We have introduced design by contract abstractions to Java by designing and
implementingContractor system.

» We have introduced user-level programmable scheduling capability to active
objects. Scheduling and synchronization decisions can be made based on the
type, signature and contents of the request messages.

» We have shown how reflection capabilities of languages can be used to introduce
type-safe and syntactically clean abstractiopSentractorandActive-RMI

» We have shown how to enhance syntax and enforce type safety by introducing an
automated design method for using library based abstractions when reflection
and meta programming capabilities are limite@lass CONCURRENCY

» We have introduced techniques using reflection and dynamic class loading to
perform runtime instrumentation.

» We have introduced a factory-based runtime instrumentation technique which
can be used when overloading class loaders is not posgiGlntractor.

» We have introduced new runtime instrumentation techniques to introduce new
syntax -- OLD & RESULT in jContractor.

* We have shown new techniques to use dynamic class loading capabilities of Java
to provide high level abstractions for remote object creation.

7.2 Open Problems and Future Directions

An important area of further study for us is the security modeling. We have currently a
rather strict security mechanism based on the RMI security model, however, it is desir-
able to have less rigid authorization and security abstractions.

An issue that requires further investigation is about identifying the synchronization
and correctness needs in the presence of multi threaded schedulers in shared-address
spaces. Without having explicit control over the scheduling and preemption of multi-
ple threads in a shared-address space many new technical difficulties are introduced.
Some of these difficulties are related with mutual exclusion of the execution of an
objects’s methods, and non-reentrant system calls. Some of these issues have been
mentioned in [15]. A concurrency mechanism with multi threaded active objects must
satisfactorily address the interference problem with respect to data encapsulation, pro-
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cedural abstraction and reusability issues, that emerge due to the potential arbitrary
interleavings of an object’s methods.

We have done preliminary design of a new sysiéatjvator, which can be seen as

the next generation &ctive-RMI jActivator will use jContractor style class loading
time instrumentation to implement active objects and asynchronous method calls.
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Appendix A

class CONCURRENC¥xport
split, attach, remotelnvoke, claimResult, resultReady
-- Non-exported features
-- current_request, has_split, is_proxy,
-- request_queue, result_queue, sendResult
-- getRequest, pendingRequestEXists

inherit
IPC
-- Interprocess Communication primitives
feature
request_queue : LINKED_LIST [REQUEST] is

-- implemented as a linked list of REQUEST

-- objects. REQUEST is a class of Parallel

-- Parallel Library; see appendix B.

-- LINKED_LIST is a generic class of Eiffel

-- data structure library [eif]
result_queue : LINKED_LIST [RESULT] is

-- queue of all results received;

-- see appendix A for RESULT
current_request : REQUEST ;

-- most recently dequeued request_queue item.

-- contains the IPC information about the client,

-- the feature name, and a list of actual

-- parameters (of type: unbounded_array[ANY])
has_split : BOOLEAN ;

-- split or attach sets to true.
is_proxy : BOOLEAN ;

-- set to true by attach or split

-- set to false in the active object
scheduler() is

deferred
-- requires any Class inheriting from
-- CONCURRENCY to provide a scheduler.
split() is
require
not has_split -- precondition for split

-- creates a new process to function as a server

-- creates a socket on the client,

-- initializes IPC parameters,

-- starts handshake protocol with server,

-- sets has_split and is_proxy to true,

-- returns and unblocks client.

-- The server process completes handshake,

-- starts-up a new Eiffel runtime environment
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-- initializes server IPC params,
-- starts executing server’s scheduler.
attach( old_server_info : SOCKET) is
require
not old_server_info. Void
-- like split except no new process is created,
-- sets has_split and is_proxy to true,
-- no handshake done;
-- returns immediatelly after initializing
-- client side of IPC parameters.
remotelnvoke( feature_name: STRING,
parameters: ARRAY[ANY]): INTEGER is
require  is_proxy;
-- cannot remotelnvoke unless a is_proxy.
-- asynchronously delivers the request to the
-- server, and returns without blocking.
-- returns a request handle (claim_number)
-- to the client identifying the request

result_available (claim_number : INTEGER ):
BOOLEAN is
require  is_proxy;
-- scans the result_queue to check if the result
-- associated with claim_number has arrived.
-- Returns, without blocking, true
-- if associated result is in queue.
claimResult (claim_number: INTEGER ): ANY is
require is_proxy;
-- if the result associated with claim_number
-- is available: returns (by dequeueing it
-- from result_queue) the corresponding result
-- otherwise, blocks until the result arrives.
-- The result is of type ANY. Every class in
-- Eiffel is a descendant of this Kernel Library
-- class ANY, and therefore all class types
-- conform to it; thus claimResult is general
-- purpose, and applicable to any result type.

sendResult ( result_value : ANY) is
-- result of the current_request is delivered to
-- the client.

-- result_value is of type ANY, therefore

-- the actual result needs to be

-- reverse-assigned to the original result type

-- after calling this method.

-- result is delivered asynchronously.
getRequest() is

-- If there are pending requests in the system,

-- place them into the request_queue, and

-- return (without dequeueing);
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-- otherwise: block until some request(s) arrives,
-- place them into request_queue; return.
pendingRequestEXxists() is
-- Return true: if there are pending requests
-- in the system.
-- Return false: otherwise.
end -- CONCURRENCY

Appendix B

class RESULT export
claim_no, set_claim_no,return_value, set_return_value
feature
claim_no : INTEGER ;
-- this is the request handle the client uses
-- to associate the result with the request.
set_claim_no (id_res : INTEGER) is
-- exported routine to set claim_no.
return_value : ANY;
-- result of the request as set by the server
-- type must conform to ANY

set_return_value( val : ANY) is
-- exported routine to set return_value
end-- RESULT

Appendix C

class REQUEST export
claim_no, set_claim_no, req_type, set_req_type,
feat_name, set_feat _name,

parameters, set_parameters
feature

claim_no: INTEGER;
-- unique id for each request
set_claim_no( req_num: INTEGER) is
-- exported feature to set claim_no
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req_type: INTEGER;

-- func, rout, attr, rattr, battr, msg, etc.
-- (optionally) used to determine what action
-- to take by the server

set_req_type(r_type : INTEGER) is

-- exported feature to set req_type

feat_name : STRING ;

-- name of the method to be remote invoked

set_feat name(f_name : STRING) is

-- exported feature to set feat_name

parameters : ARRAY [ANY];

-- the array contains the arguments of

-- the method to be remote invoked.

-- the client needs to initialize the elements in
-- the same order used to execute the routine.

set_parameters ( par_list : ARRAY [ANY])

-- exported feature to deep clone parameters

end-- REQUEST

Appendix D

class FUTURE export
data, is_ready

feature

proxy: CONCURRENCY;

--proxy object used during remote invocation

call_id: INTEGER,;

--the handle returned by remotelnvoke

returned_data : ANY;

--the data object returned by claimResult

create(proxy_obj: Conc_A, call_no: INTEGER) is

do
proxy := proxy_obj;
calli_id:= call_no;
end;
data: ANY is -- blocking acces to result
do
remote _access;
Result := returned_data;
end;
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remote_access is

once
returned _data := proxy.claimResult(call_id);
end;
is_ready : BOOLEAN is
do
Result := proxy.resultReady(call_id);
end;
end; - FUTURE
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